ЛОБОВОЕ СОПРОТИВЛЕНИЕ КРЫЛА
Лобовое сопротивление - это сопротивление движению крыла самолета в воздухе. Оно складывается из профильного, индуктивного и волнового сопротивлений:
Хкр=Хпр+Хинд+ХВ. (2.8)
Волновое сопротивление рассматриваться не будет, так как возникает на скоростях полета свыше 450 км/ч.
Профильное сопротивление слагается из сопротивления давления и сопротивления трения:
Хпр=ХД+Хтр .(2.9)
Сопротивление давления - это разность давлений перед и за крылом. Чем больше эта разность, тем больше сопротивление давления. Разность давлений зависит от формы профиля, его относительной толщины и кривизны (Рис. 18, на рисунке обозначено Сх - коэффициент профильного сопротивления).
Рис. 18 График зависимости профильного сопротивления от толщины профиля
Чем больше относительная толщина с профиля, тем больше повышается давление перед крылом и больше уменьшается за крылом, на его задней кромке. В результате увеличивается разность давлений и, как следствие, увеличивается сопротивление давления. Обтекание воздушным потоком крыльев самолетов Як-52 и Як-55 в рабочем диапазоне углов атаки (линейный участок характеристики Cy=f(a) происходит без отрыва пограничного слоя со всей поверхности профиля крыла, в результате этого сопротивление давления возникает из-за разности давлений передней части крыла и задней. Величина сопротивления давления невелика. Возникновение сопротивления давления сопровождается образованием слабых вихрей в спутной струе, образующейся из пограничного слоя.
При обтекании профиля крыла воздушным потоком на углах атаки, близких к критическому, сопротивление давления значительно возрастает. При этом размеры завихренной спутной струи и самих вихрей резко увеличиваются.
Сопротивление трения возникает вследствие проявления вязкости воздуха в пограничном слое обтекающего профиля крыла. Величина сил трения зависит от структуры пограничного слоя и состояния обтекаемой поверхности крыла (его шероховатости). В ламинарном пограничном слое воздуха сопротивление трения меньше, чем в турбулентном пограничном слое. Следовательно, чем большую часть поверхности крыла обтекает ламинарный пограничный слой воздушного потока, тем меньше сопротивление трения.
На величину сопротивления трения влияют: скорость самолета; шероховатость поверхности; форма крыла. Чем больше скорость полета, с худшим качеством обработана поверхность крыла и толще профиль крыла, тем больше сопротивление трения.
Рис. 19 Обтекание крыла конечного размаха
Для уменьшения сопротивления трения при подготовке самолетов к полету необходимо сохранять гладкость поверхности крыла и частей самолета, особенно носка крыла. Изменение углов атаки на величину сопротивления трения практически не влияет.
Соотношение между сопротивлением трения и сопротивлением давления в большой степени зависит от толщины профиля (см. Рис. 18). На рисунке видно, что с ростом относительной толщины профиля увеличивается доля, приходящаяся на сопротивление давления. Это же можно сказать, анализируя и сопоставляя профили самолетов Як-52 и Як-55.
Индуктивное сопротивление - это прирост лобового сопротивления, связанный с образованием подъемной силы крыла При обтекании крыла невозмущенным воздушным потоком возникает разность давлений над крылом и под ним В результате часть воздуха на концах крыльев перетекает из зоны большего давления в зону меньшего давления (Рис. 19).
Поток воздуха перетекает с нижней поверхности крыла на верхнюю и накладывается на воздушный поток, набегающий на верхнюю часть крыла, что приводит к образованию завихрений массы воздуха за задней кромкой, т. е. образуется вихревой жгут. Воздух в вихревом жгуте вращается. Скорость вращения вихревого жгута различна, в центре она наибольшая, а по мере удаления от оси вихря - уменьшается.
Рис. 20 Отклонение воздушного потока вниз, вызванное вихревым шнуром
Так как воздух обладает вязкостью, то вращающийся воздух в жгуте увлекает за собой окружающий воздух. Вихревые жгуты левого и правого полукрыльев вращаются в разные стороны таким образом, что в пределах крыла движение воздушных масс направлено сверху вниз.
Такое движение воздушных масс сообщает воздушному потоку, обтекающему крыло, дополнительную скорость, направленную вниз. При этом любая часть воздуха, обтекающая крыло со скоростью V, отклоняется вниз со скоростью U. Величина этой скорости обратно пропорциональна расстоянию точки от оси вихревого жгута, т. е. в конечном счете от удлинения крыла, от разности давлений над и под крылом и от формы крыла в плане.
Угол Da, на который отклоняется поток воздуха, обтекающий крыло со скоростью V, наведенной вертикальной скоростью U, называется углом скоса потока (Рис. 20). Величина его зависит от значения вертикальной скорости, индуктированной вихревым жгутом, и скорости набегающего потока V:
(2.10)
Поэтому благодаря скосу потока истинный угол атаки aист крыла в каждом его сечении будет отличаться от геометрического или кажущегося угла атаки aкаж на величину Da (Рис. 21):
(2.11)
Как известно, подъемная сила крыла Y всегда перпендикулярна набегающему потоку, его направлению. Поэтому вектор подъемной силы крыла отклоняется на угол Da и перпендикулярен к направлению воздушного потока V.
Подъемной силой будет не вся сила Y' а ее составляющая Y, направленная перпендикулярно набегающему потоку:
Рис. 21 Образование индуктивного сопротивления
Рис. 22 Зависимость коэффициента лобового сопротивления Сx от угла атаки самолетов Як-52 и
Як-55
(2.12)
Ввиду малости величины Da считаем Другая составляющая сила Y' будет равна
(2.13)
Эта составляющая направлена по потоку и называетсяиндуктивным сопротивлением (Рис. 21).
Чтобы найти величину индуктивного сопротивления, необходимо вычислить скорость U и угол скоса потока.
Зависимость угла скоса потока от удлинения крыла, коэффициента подъемной силы Су и формы крыла в плане выражается формулой
(2.14)
где А - коэффициент, учитывающий форму крыла в плане.
Для крыльев самолетов коэффициент А равен
(2.15)
где lэф - удлинение крыла без учета площади фюзеляжа, занимающей часть крыла;
d- величина, зависящая от формы крыла в плане.
Подставим значения формул (2.14), (2.15) в формулу (2.13), преобразуя ее, получим
(2.16)
где Cxi-коэффициент индуктивного сопротивления.
Он определяется по формуле Из формулы видно, чтоСхпрямо пропорционален коэффициенту подъемной силы и обратно пропорционален удлинению крыла.
При угле атаки нулевой подъемной силы aо индуктивное сопротивление будет равно нулю.
На закритических углах атаки нарушается плавное обтекание профиля крыла и, следовательно, формула определения Cx1 не приемлема для определения его величины.
Так как величина Сх обратно пропорциональна удлинению крыла, поэтому самолеты, предназначенные для полетов на большие расстояния, имеют большое удлинение крыла: l=14…15.
Дата добавления: 2016-08-23; просмотров: 6772;