Алгоритмы группы KWE
В основе алгоритма сжатия по ключевым словам положен принцип кодирования лексических единиц группами байт фиксированной длины. Примером лексической единицы может быть обычное слово. На практике, на роль лексических единиц выбираются повторяющиеся последовательности символов, которые кодируются цепочкой символов (кодом) меньшей длины. Результат кодирования помещается в таблице, образовывая так называемый словарь.
Существует довольно много реализаций этого алгоритма, среди которых наиболее распространенными являются алгоритм Лемпеля-Зіва (алгоритм LZ) и его модификация алгоритм Лемпеля-Зіва-Велча (алгоритм LZW). Словарем в данном алгоритме является потенциально бесконечный список фраз. Алгоритм начинает работу с почти пустым словарем, который содержит только одну закодированную строку, так называемая NULL-строка. При считывании очередного символа входной последовательности данных, он прибавляется к текущей строке.
Процесс продолжается до тех пор, пока текущая строка соответствует какой-нибудь фразе из словаря. Но рано или поздно текущая строка перестает соответствовать какой-нибудь фразе словаря. В момент, когда текущая строка представляет собой последнее совпадение со словарем плюс только что прочитанный символ сообщения, кодер выдает код, который состоит из индекса совпадения и следующего за ним символа, который нарушил совпадение строк. Новая фраза, состоящая из индекса совпадения и следующего за ним символа, прибавляется в словарь. В следующий раз, если эта фраза появится в сообщении, она может быть использована для построения более длинной фразы, что повышает меру сжатия информации.
Алгоритм LZW построен вокруг таблицы фраз (словаря), которая заменяет строки символов сжимаемого сообщения в коды фиксированной длины. Таблица имеет так называемое свойством опережения, то есть для каждой фразы словаря, состоящей из некоторой фразы w и символа К, фраза w тоже заносится в словарь. Если все части словаря полностью заполнены, кодирование перестает быть адаптивным (кодирование происходит исходя из уже существующих в словаре фраз).
Алгоритмы сжатия этой группы наиболее эффективны для текстовых данных больших объемов и малоэффективны для файлов маленьких размеров (за счет необходимости сохранение словаря).
Алгоритм Хаффмана
В основе алгоритма Хаффмана лежит идея кодирования битовыми группами. Сначала проводится частотный анализ входной последовательности данных, то есть устанавливается частота вхождения каждого символа, встречащегося в ней. После этого, символы сортируются по уменьшению частоты вхождения.
Основная идея состоит в следующем: чем чаще встречается символ, тем меньшим количеством бит он кодируется. Результат кодирования заносится в словарь, необходимый для декодирования. Рассмотрим простой пример, иллюстрирующий работу алгоритма Хаффмана.
Пусть задан текст, в котором бурва 'А' входит 10 раз, буква 'В' - 8 раз, 'С'- 6 раз , 'D' - 5 раз, 'Е' и 'F' - по 4 раза. Тогда один из возможных вариантов кодирования по алгоритму Хаффмана приведен в таблицы 1.
Таблица 1.
Символ | Частота вхождения | Битовый код |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
Как видно из таблицы 1, размер входного текста до сжатия равен 37 байт, тогда как после сжатия - 93 бит, то есть около 12 байт (без учета длины словаря). Коэффициент сжатия равен 32%. Алгоритм Хаффмана универсальный, его можно применять для сжатия данных любых типов, но он малоэффективен для файлов маленьких размеров (за счет необходимости сохранение словаря).
На практике программные средства сжатия данных синтезируют эти три "чистых" алгоритмы, поскольку их эффективность зависит от типа и объема данных. В таблице 2 приведены распространенные форматы сжатия и соответствующие им программыи-архиваторы, использующиеся на практике.
Таблица 2.
Формат сжатия | Операционная система MS DOS | Операционная система Windows | ||
Программа архивации | Программа разархивации | Программа архивации | Программа разархивации | |
ARJ | Arj.exe | Arj.exe | WinArj.exe | WinArj.exe |
RAR | Rar.exe | Unrar.exe | WinRar.exe | WinRar.exe |
ZIP | Pkzip.exe | Pkunzip.exe | WinZip.exe | WinZip.exe |
Дата добавления: 2016-05-31; просмотров: 3760;