Синхронный генератор


Везде в мире применяется только этот тип генератора. Изложим принцип его работы.

Ротор генератора, на котором уложена обмотка возбуждения, приводится во вращение от турбины. Обмотка возбуждения через щетки и контактные кольца питается от источника постоянного тока (машина – генератор постоянного тока или статический кремниевый выпрямитель).

Через полюса ротора создается постоянное во времени магнитное поле, вращающееся вместе с ротором. Пересекая контуры обмотки, уложенной на неподвижной части генератора – статоре, магнитное поле, в соответствии с принципом электромагнитной индукции, наводит в обмотке ЭДС. Обычно на статоре укладываются три обмотки, сдвинутые в пространстве по окружности на 120 градусов одна относительно другой. В этом случае наводится система ЭДС – трехфазная. При подключении к трехфазной обмотке статора нагрузки в ней возникает соответствующий ток нагрузки. Так осуществляется преобразование механической энергии турбины в электрическую энергию.

Рис. 2. Схема синхронного генератора

Конструктивная схема шестиполюсного СГ представлена на рис. 2. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.

Трансформатор

Трансформаторэто статическое электромагнитное устройство, предназначенное для преобразования одной системы тока и напряжения в другую систему. Поток электрической энергии, проходя через трансформатор, уменьшается на величину потерь в нем (для мощных трансформаторов – это доли процента от передаваемой мощности).

Повышающий трансформатор устанавливается после генератора в начале линии электропередач (ЛЭП), понижающий – в конце. Необходимость применения повышающего и понижающего трансформаторов поясняется примером. От Новочеркасской ГРЭС до Ростова проведена двухцепная (т. е. две трехфазные линии параллельно) ЛЭП напряжением 220 кВ. Генераторное напряжение 22 кВ подается на соответствующую обмотку трансформатора; с вторичной обмотки снимается напряжение 220 кВ, энергия при таком напряжении передается по ЛЭП. В Ростове, в конце ЛЭП, на приемных городских подстанциях напряжение через понижающие трансформаторы понижаются до напряжений 110, 35, 10 кВ, и энергия распределяется по промышленным предприятиям и жилым районам.

Передаваемая активная мощность Р = 300 МВт. При работе одной из двух цепей (вторая, допустим, в ремонте) и cosj = 0,85 ток в фазе находим из выражения :

,

где – линейное напряжение;

– ток в фазе;

cosj – коэффициент мощности.

Сечение фазы при плотности тока j = 1,5 А/мм2 будет равно 750/1,5 = 500 мм2. Если же попытаться передать указанную мощность на генераторном напряжении, то потребовалось бы сечение в 10 раз больше. Во столько же раз повысились бы потери в ЛЭП.

Потери рассчитываются по формуле

,

где – плотность тока, А/м2;

– удельное электрическое сопротивление для материала провода (алюминий) при расчетной температуре 70 °С, Ом м;

Ом·м;

– объем проводникового материала (алюминия) одной фазы, м3.

Для ЛЭП напряжением 220 кВ (при длине ЛЭП 50 км) потери будут равны:

кВт,

что составляет 2 % от передаваемой мощности.

При напряжении 22 кВ (генераторное напряжение) потери увеличатся в 10 раз и составят 61500 кВт, т. е. 20 % от передаваемой мощности – это совершенно неприемлемо,

Для сечения провода 5000 мм2 (на фазу) потребовались бы специальные (очень тяжелые) опоры и изоляторы (стандартные изоляторы такой нагрузки не выдержат).

Таким образом, вариант ЛЭП с напряжением 22 кВ совершенно неприемлем – как технически, так и экономически (слишком велики затраты на проводниковый материал и на потери).

Чем бльший поток мощности передается и чем больше длина передачи – тем более высокое напряжение приходится применять.

Необходимость понижения напряжения объясняется следующими факторами. Поясним это на примере. В Ростове, от городских районных подстанций распределять энергию по десяткам промышленных предприятий и жилых районов – при напряжении 220 кВ – затруднительно из-за того, что слишком много городской территории будет занято полосами отчуждения под опоры ЛЭП (чем больше напряжение, тем шире полоса отчуждения). Подавать энергию под высоким напряжением непосредственно в цеха опасно для людей.

В нашей стране в ЭЭС принята трехфазная система переменного синусоидального тока при частоте 50 Гц. При напряжениях 110 кВ и выше нейтраль глухо заземлена; при напряжениях 6,10,35 кВ нейтраль изолирована от земли. В первом случае уровень изоляции всех элементов ЭЭС можно выбирать в раз меньше, чем во втором. Но зато в первом случае выше уровень токов коротких замыканий, из-за чего приходится выбирать более мощные выключатели, ставить в некоторых случаях токоограничивающие реакторы.

Выключатели

Выключатели – это коммутирующие аппараты, предназначенные для включения – отключения электрических нагрузок в нормальных и аварийных режимах. Коммутация происходит в течение нескольких сотых долей секунды. При затягивании во времени отключения токов коротких замыканий могут не выдержать, перегореть обмотки электрических машин, трансформаторов, провода воздушных ЛЭП, кабельные линии (у кабелей раньше всего загорится изоляция). Таким образом, выключатели (воздушные, масляные, элегазовые, вакуумные) – очень ответственные аппараты.

Объединение множества электрических станций, синхронных генераторов на параллельную работув систему – повышает надежность электроснабжения, позволяет выравнивать график нагрузки в целом системы за счет так называемого широтного эффекта (дополнительные потоки мощности направляются в те части ЭЭС, где в данный момент имеет место пик нагрузки, а пик этот перемещается за счет разных часовых поясов). В системе легче преодолевать аварии (взаимопомощь разных станций). Однако так называемые «реформы» Чубайса, направлены на разъединение системы на множество блоков, что неизбежно приведет к снижению её надежности.

Вопросы и задачи для самоконтроля

2.1. Основные типы электрических станций и принципы их работы?

2.2.Что произойдет в системе при внезапном включении мощного потребителя?

2.3. Что произойдет при внезапном отключении потребителя?

2.4. Вычислите токи на стороне генератора и ЛЭП при передаче мощности 300 000 кВт (один блок) от Новочеркасской ГРЭС в Ростов. Напряжение генератора 22 кВ, напряжение ЛЭП 220 кВ; cos =0,85.

2.5. Какое принципиальное преимущество имеют большие электроэнергетические системы (например, Единая система Европейской части России) по сравнению с малыми (например, автономная система Сахалина)?


Глава 3. Потребители электрической энергии

В настоящее время существует огромное разнообразие потребителей электрической энергии, количество которых увеличивается. Научно-технический прогресс в основном идет за счет применения электрической энергии. Вместе с тем используются и потребители, применение которых началось многие десятки лет назад и даже более ста лет назад.

Ниже приводится краткая характеристика основных потребителей, которые питаются от системы электроснабжения.



Дата добавления: 2020-10-14; просмотров: 380;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.