Схемы МТЗ с независимыми выдержками времени, выполненными по схемам полной и неполной звезды, область применения, принцип действия.
Ответ:
Неполная звезда.
На рис. 5, а, в приведена схема двухступенчатой токовой защиты, состоящей из максимальной токовой защиты с двумя или тремя реле тока и токовой отсечки с двумя реле тока. Два трансформатора тока ТТЛ и ТТС включены в фазы А и С. Их вторичные обмотки соединены по схеме неполной звезды. Измерительные органы защиты — максимальные реле тока мгновенного действия включены в фазные провода вторичных цепей ТТЛ и ТТС (реле РТ1, РТ4 и РТ2, РТ5) и вобратный провод схемы (реле РТЗ).
В нормальном режиме в реле РТ1 и РТ4 (рис. 5, а) проходит вторичный ток фазы А (I2А), в реле РТ2, РТ5 — ток фазы С (/2 с). а в реле РТЗ — геометрическая сумма этих токов: /2в = I2A+l2c(рис. 5, б).
При угловом сдвиге между векторами фазных токов в стандартной трехфазной сети, равном 120°, значение тока фазы В равно значению токов в фазах А и С. В схеме неполной звезды (рис. 5, а) этот ток проходит в обратном проводе, куда включено реле РТЗ. Таким образом, коэффициент схемы здесь
K(3)cх= 1.
Рис. 5, Принципиальная схема двухступенчатой токовой защиты на постоянном оперативном токе для сетей 3—35 кВ (схема "неполная звезда") : а — цепи переменного тока; б — векторная диаграмма вторичных токов /2,' в — цепи постоян-
ного оперативного тока
РТ1—РТЗ — максимальные реле тока максимальной токовой зашиты; РТ4, РТ5 — реле токовой отсечки; РВ , РП , PC— реле времени, промежуточное, сигнальные (указательные) ; ТТЛ, ТТС — измерительные трансформаторы тока вфазах А и С; В — выключатель защищаемой линии электропередачи (или трансформатора)
При трехфазном КЗ (рис. 4, а) вторичные равные между собой токи КЗ фаз А, В и С (/(3)2 к ) проходят по всем реле РТ1—РТ5 (рис. 5, а) .
При двухфазных КЗ между фазами А и В или В и С вторичные токи КЗ проходят соответственно через реле РТ1, РТ4 или РТ2, РТ5, а также в обоих случаях — через реле РТЗ. Эти токи могут быть определены по выражению
где /(3)2 к — ток при трехфазном КЗ; nт — коэффициент трансформации трансформаторов тока; 0,865 — коэффициент, показывающий, что значение тока при двухфазном КЗ меньше, чем при трехфазном.
При двухфазном КЗ между фазами А и С такие же токи проходят через реле РТ1, РТ2, РТ4, РТ5, но в реле РТЗ (в обратном проводе) значение тока близко к нулю. Однако это не может привести к отказу срабатывания защиты, так как контакты реле РТ1—РТЗ включены параллельно (рис. 5, в), иначе говоря — по логической схеме ИЛИ. Для срабатывания защиты или отсечки достаточно замыкания контактов одного из реле РТ1, РТ2 или РТЗ и соответственно РТ4 или РТ5.
При однофазном КЗ на землю фаз А или С (рис. 4, в) , на которых установлены трансформаторы тока, максимальная токовая защита (реле РТ1, РТ2) и токовая отсечка (РТ4, РТ5) принципиально могут работать. Но при однофазном КЗ фазы В, где нет трансформатора тока (рис. 5, а) , защита по схеме неполной звезды действовать не может. Поэтому в сетях с большими токами замыкания на землю эта схема не применяется.
При двойных замыканиях на землю разных фаз в двух точках сети (рис. 4, г) защита по схеме неполной звезды принципиально может срабатывать, причем в большинстве случаев при таких повреждениях отключается только одна из поврежденных линий. Например, отключается Л1 (рис. 4, г) , на которой произошло замыкание на землю фазы А,где есть трансформатор тока, и не отключается линия Л2, на которой произошло замыкание на землю фазы В, где нет трансформатора тока и поэтому ее защита не действует. Для сетей 3—35 кВ с малыми токами замыкания на землю такое свойство схемы неполной звезды считается положительным, поскольку здесь допускается длительная работа линии с однофазным замыканием на землю. Если в этих сетях выполнить защиту по схеме полной звезды, т. е. с трансформаторами тока во всех трех фазах, то при двойных замыканиях на землю могли бы отключаться обе поврежденные линии (при одинаковых уставках по времени их защит) . Это приводило бы к отключению большего числа потребителей. Для уменьшения количества отключений линий при таких видах повреждений принято устанавливать трансформаторы тока на одноименных фазах, обычно А и С, на всех элементах электрически связанной сети.
Важная роль реле РТЗ, включенного в обратный провод двухфазной схемы защиты (рис. 5, а), выявляется при рассмотрении двухфазных КЗ за трансформатором со схемой соединения обмоток звезда — треугольник
(рис. 4, д). Токи КЗ при повреждении на стороне низшего напряжения НН трансформируются на сторону высшего напряжения ВН таким образом, что в одной из фаз на стороне ВН значение тока КЗ будет в два раза выше, чем в двух других, и численно равно току трехфазного КЗ в этом же месте (табл. 1). При выполнении максимальной токовой защиты с тремя реле РТ1—РТЗ при всех сочетаниях двухфазных КЗ на стороне НН в одном из этих реле будет проходить такой же ток, как и при трехфазном КЗ (табл. 1). Иначе говоря, коэффициенты чувствительности, определяемые по выражению (2) при этих видах КЗ, будут:
К(2)чув= К(3)чув Но при отсутствии реле РТЗ в обратном проводе при одном из видов двухфазного КЗ за трансформатором со схемой соединения обмоток
звезда - треугольник-11, так же как и за трансформатором со схемой треугольник — звезда-11, в реле РТ1 и РТ2 пройдет ток, равный лишь половине тока трехфазного КЗ. Для такой схемы * К(2)чув= К(3)чув и это является ее существенным недостатком. Поэтому максимальная токовая защита должна выполняться трехрелейной не только на трансформаторах с указанными схемами соединения обмоток, но и на линиях, питающих такие трансформаторы.
Таблица 1.
Несколько иначе решается вопрос о необходимости трехрелейного выполнения максимальной токовой защиты трансформаторов со схемой соединения обмоток звезда — звезда с выведенной нейтралью на стороне НН (рис. 4, е). Здесь установка третьего реле РТЗ в два раза повышает чувствительность максимальной токовой защиты к однофазным КЗ на стороне НН (напряжением, как правило, 0,4—0,23 кВ) по сравнению с чувствительностью двухрелейной схемы защиты. Действительно, при КЗ на землю любой из фаз на стороне НН в одной из фаз на стороне ВН будет проходить ток, в два раза больший, чем в двух других. Трех-релейная схема защиты реагирует именно на это значение тока, по которому вычисляется ее коэффициент чувствительности К(1)чув. Для двухрелейной схемы значение этого коэффициента оказывается в два раза меньше. Однако при однофазных КЗ за рассматриваемыми трансформаторами численное значение токов КЗ на стороне ВН часто настолько мало, что и установка третьего реле не обеспечивает достаточную чувствительность максимальной токовой защиты к этим видам КЗ. В таких случаях максимальную токовую защиту на стороне ВН выполняют двухрелейной (без реле РТЗ, рис. 5, а), но на стороне НН устанавливают специальную токовую защиту нулевой последовательности, предназначенную для защиты стороны НН от однофазных КЗ на землю.
Токовая отсечка (рис. 5, а) в сетях напряжением 3—35 кВ выполняется с двумя реле (РТ4, РТ5), поскольку по принципу действия она не должна срабатывать при КЗ за трансформаторами, и установка третьего реле в обратном проводе не повысила бы ее чувствительность. Максимальная токовая защита с реле тока мгновенного действия (типа РТ-40, РСТ-13 и т. п.) обязательно имеет в своей схеме реле времени (РВ на рис. 5, в). В схемах на оперативном постоянном токе используются электромеханические реле времени (с часовым механизмом) типа РВ-100 или ранее выпускавшиеся ЭВ-100, а в последние годы — электронные реле типов РВ-01, реже — ПРВ, ВЛ и некоторые другие (§ 5).
Рис. 6, Принципиальная схема максимальной токовой защиты с обратнозависимой времятоковой характеристикой на постоянном оперативном токе: а — цепи переменного тока; б — цепи постоянного оперативного тока; в — времятоковая характеристика t = f (I) реле типа РТ-80
В схеме токовой отсечки устанавливается промежуточное реле (РП на рис. 5, в), имеющее более мощные контакты, чем у максимальных реле тока, для того, чтобы коммутировать большой ток электромагнита отключения выключателя В. Кроме того, промежуточное реле создает небольшое замедление действия токовой отсечки, что часто оказывается необходимым для обеспечения ее селективной работы. Например, небольшая выдержка времени обеспечивает несрабатывание отсечки линии 10 кВ при КЗ в трансформаторе, подключенном к этой линии, до тех пор, пока не расплавятся вставки плавких предохранителей, защищающих этот трансформатор. Используются промежуточные реле и без замедления типа РП-23 или новые РП-16, и с регулируемым временем срабатывания серии РП-250 или новые РП-18 (§5).
Для сигнализации действия максимальной токовой защиты и токовой отсечки устанавливаются сигнальные реле РС1, РС2 (рис. 5, в). Раздельная сигнализация действия этих защит может помочь обслуживающему персоналу ориентировочно определить зону повреждения. Например, отключение трансформатора от токовой отсечки указывает на повреждение трансформатора со стороны ВН, где установлена отсечка. Действие максимальной токовой защиты чаще всего происходит при КЗ за трансформатором (особенно при наличии специальных защит от внутренних повреждений — газовой, дифференциальной).
По схеме неполной звезды выполняются двухступенчатые токовые защиты не только с мгновенными реле максимального тока (рис. 5), но и с реле, имеющими обратнозависимую от тока характеристику, чаще всего с реле типа РТ-80 (рис. 6, а, б). В реле этого типа входит индукционный элемент, обеспечивающий обратнозависимую от тока времятоковую характеристику максимальной токовой защиты, и электромагнитный элемент, выполняющий функции токовой отсечки мгновенного действия [7]. На рис. 6, в показана времятоковая характеристика реле РТ-80. Индукционный элемент срабатывает при токе /с,3, но при этом время действия защиты очень велико (несколько секунд). Чем ближе место КЗ и чем больше значение тока /к, тем меньше время срабатывания защиты Г. При КЗ в зоне действия отсечки (рис. 1), когда значение тока /к превышает ее ток срабатывания /с.0, действует электромагнитный элемент и защита срабатывает без выдержки времени на отключение выключателя В поврежденной линии.
Двухступенчатая максимальная токовая защита, использующая трансформаторы тока только в двух фазах (неполная звезда) может выполняться также комплектными устройствами типа ЯРЭ-2201 и ТЗВР. Измерительные органы этих защит реагируют не на фазные токи, как реле РТ1—РТ5 в схеме рис. 5, а на разность фазных токов [8]. Это несколько повышает чувствительность защиты к двухфазным КЗ, однако создает неудобства при согласовании чувствительности таких защит и защит, реагирующих на фазные токи, в том числе защит, выполненных с помощью плавких предохранителей. Защиты типа ЯРЭ-2201 и ТЗВР пока не нашли широкого применения.
Полная звезда.
В этой схеме трансформаторы тока устанавливаются во всех трех фазах защищаемого элемента (рис. 7). Измерительные органы (реле) максимальной токовой защиты включаются в каждую фазу (РТ1—РТЗ), а токовой отсечки — в любые две фазы (РТ4, РТ5), Поскольку в нормальном режиме в этих реле проходят фазные токи, равные вторичным токам соответствующих трансформаторов тока, для этой схемы, так же как и для предыдущей, неполной звезды, коэффициент схемы равен 1.
При трехфазном и всех видах двухфазных КЗ (рис. 4, а, б) вторичные токи КЗ проходят по всем трем или каким-либо двум измерительным реле, что обеспечивает надежную работу схемы. При всех видах однофазных и двухфазных КЗ на землю (рис. 4, в, г) также обеспечивается работа схемы максимальной токовой защиты с тремя реле РТ1— РТЗ.Токовая отсечка с двумя реле (РТ4, РТ5) принципиально не реагирует на однофазное КЗ той фазы, в которой отсутствует измерительныйорган, в данной схеме — фазы В (рис. 7).
Рис. 7. Цепи переменного тока двухступенчатой максимальной токовой защиты и токовой защиты нулевой последовательности для сетей с глухозаземленной нейтралью напряжением 110 кВ и выше (схема «полная звезда).
Однако это не считается недостатком, так как в сетях 110 кВ и выше, где в основном и применяется схема полной звезды, наряду с защитой от междуфазных КЗ обязательно устанавливается специальная ступенчатая токовая защита нулевой последовательности от КЗ на землю (ТЗНП на рис. 7). Измерительные органы ТЗНП включены внулевой провод схемы полной звезды. В нормальном симметричном режиме ток в нулевом проводе практически отсутствует, поскольку геометрическая сумма трех фазных токов при угловом сдвиге между ними в 120°, равна нулю. При междуфазных КЗ (рис. 4, а, б) ток в нулевом проводе также близок к нулю. Но при КЗ на землю (рис. 4, в, г) здесь проходят большие токи, обеспечивающие срабатывание ТЗНП. Совместное применение защит от междуфазных КЗ и защит от КЗ на землю ("земляных") обеспечивает надежное отключение всех видов КЗ в защищаемой сети 110 кВ и выше [1—3].
При двухфазных КЗ за стандартными двухобмоточными и трехобмоточными трансформаторами, у которых вторичные обмотки НН или СН соединены в треугольник (например, рис. 4, д), максимальная токовая защита, выполненная по схеме полной звезды с тремя реле (рис. 7), реагирует на больший из токов КЗ, равный по значению току трехфазного КЗ. Таким образом, чувствительность защиты при двухфазных и трехфазных КЗ одинакова.
Однако область применения трехфазной трехрелейной максимальной токовой защиты (рис. 7) ограничена. Для защиты сетей 3—35 кВ она не применяется, поскольку в этих сетях устанавливаются, как правило, только по два трансформатора тока. Если бы устанавливались три трансформатора тока, то нецелесообразно выполнять трехрелейную максимальную токовую защиту, которая при двойных замыканиях на землю (рис. 4, г) могла бы вызывать отключение обеих поврежденных линий (см. выше). Что касается сетей напряжением 110 кВ и выше, то для защиты линий этих классов напряжения чаще всего вместо максимальной токовой защиты используется дистанционная защита [1--3, 8].
На трансформаторах 110 кВ и выше максимальная токовая защита по схеме полной звезды (рис. 7) также редко применяется по двум причинам. Одной из причин является то, что для включения измерительных реле максимальной токовой защиты понижающих трансформаторов чаще всего используют те же трансформаторы тока, что и для дифференциальной защиты, а их вторичные цепи, как правило, соединяются по схеме треугольника (см. далее). Другой причиной является необходимость существенного увеличения тока срабатывания максимальной токовой защиты, выполненной по этой схеме, для того чтобы обеспечить ее бездействие при однофазных КЗ на землю в питающей сети (рис. 8). При глухозаземленной нейтрали трансформатора, что всегда возможно в сетях этих классов напряжения, при внешнем однофазном КЗ через нейтраль трансформатора может проходить весьма большой ток, называемый утроенным током нулевой последовательности: З/о. При этом по каждой фазе обмотки ВН, соединенной в звезду, проходит всего по одной трети тока 3/0, однако численное значение токов в фазах и, следовательно, в измерительных органах защиты (реле РТ1—РТЗ) оказывается весьма большим, в несколько раз превышающим номинальный ток трансформатора. Для обеспечения несрабатывания защиты при таких внешних КЗ (отстройки) необходимо было бы сильно увеличить ток срабатывания защиты, что привело бы к нежелательному снижению ее чувствительности при КЗ за трансформатором.
Токовая отсечка (реле РТ4, РТ5 на рис. 7) применяется на линиях всех классов напряжения.
Логическая часть, исполнительные и сигнальные органы для схемы защиты рис. 7 используются те же, что и для схемы рис. 5.
Дата добавления: 2020-10-14; просмотров: 686;