Метаболические пути, созданные методами генной инженерии
В настоящее время предложено создание генно-инженерных систем не просто экспрессирующих отдельные рекомбинантые ферменты, но систем, включающих несколько рекомбинантых ферментов и даже небольшой метаболический путь. Такая задача стала особенно актуальной с развитием молекулярной биотехнологии. Так, усилия по созданию искусственных метаболических путей направлены на создание систем биодеградации ксенобиотиков. Некоторые микроорганизмы обладают природной способностью к деградации различных ксенобиотиков, однако эти природные способности имеют определенные ограничения для использования в промышленных масштабах. Микроорганизмы обладают способностью разрушать только определенные ксенобиотики; биодеградация часто происходит довольно медленно; в большинстве очагов загрязнения содержится смесь ксенобиотико и микроорганизмы, способные разрушать одни вещества, могут инактивироваться другими.
Задача создания искусственного метаболического пути может решаться двумя путями:
· объединением нескольких рекомбинантных ДНК в одной клетке;
· объединением нескольких генов в одной рекомбинантной ДНК.
Объединение плазмид
Эксперименты по созданию бактериальных штаммов обладающих широкими катаболическими возможностями заключаются в переносе в клетки плазмид, каждая из которых кодирует фермент, расщепляющий определенный класс углеводородов – камфары, октана, нафталина, ксилола. Такие «супербациллы» успешно создаются. Так, был получен штамм, который растет на неочищенной нефти лучше исходных штаммов, взятых по отдельности или вместе.
Объединение нескольких генов в одной рекомбинантной ДНК
Работы по созданию генно-инженерных систем для утилизации тех или иных субстратов позволяют объединять в рамках одной рекДНК нескольких генов, кодирующих ферменты расщепления этого субстрата. При этом эти гены могут быть как бактериального, так и животного и растительного происхождения. Таким образом может быть создан метаболический путь, который не существует в природе.
Одним из примеров может служить создание рекомбинантного штамма E.coli, синтезирующего краситель индиго. Этот краситель широко используется в текстильной промышленности, в частности для окрашивания джинсовой ткани и является одним из самых востребованных красителей. В экспериментах по соединению в одной рекомбинантной системе генов утилизации нафталина, толуола и фенола удалось получить штамм, который окрашивался в синий цвет. Оказалось, что рекомбинантный штамм способен синтезировать индиго из триптофана в 4 стадии. Таким образом, этот неожиданный результат был получен объединением 2-х метаболических путей.
Создание рекомбинантных микроорганизмов с новой ферментативной активностью
Основной целью создания рекомбинантных микроорганизмов с новой ферментативной активностью, способного превращать существующий субстрат в ценный продукт, который ранее получали только сочетанием микробиологического и химического синтеза. Например, производство L-аскорбиновой кислоты (витамина С), синтез аминокислот, антибиотиков, микробиологического синтеза каучука и других веществ.
Производство L-аскорбиновой кислоты (витамина С) – трудоемкий процесс, включающий микробиологическую и химическую стадии. Биохимические исследования показали, что одни бактерии могут превращать глюкозу в 2,5-дикетоглюконовую кислоту (Erwinia, Acetobacter, Gluconobacter), а другие (Corynebacterium) могут превращать 2,5-дикетоглюконовую кислоту в кетогулоновую, т.к. экспрессирует соответствующую редуктазу. Создание рекомбинантного штамма позволило объединить два метаболических пути в одном: ген редуктазы дикетоглюконовой кислоты из Corynebacterium был клонирован и применен для трансформации клеток Erwinia .
ЛЕКЦИЯ 5.2
Дата добавления: 2020-10-01; просмотров: 397;