Осушка воздуха твердыми сорбентами.


В качестве адсорбентов применяют пористые вещества с большой удельной поверхностью, обычно относимой к единице массы вещества. Адсорбенты характеризуются своей поглотительной или адсорбционной способностью. Для осушки воздуха наиболее часто применяют силикагель, который представляет собой продукты обезвоживания геля кремниевой кислоты, получаемые путем обработки раствора силиката натрия (растворимого стекла) минеральными кислотами. Удельная поверхность силикагелей от 400 до 770 м2/г. Размер гранул от 0,2 до 7 мм, насыпная плотность 400…800 г/л. Обводненность силикагеля в конце периода его эффективной работы достигает 9…11 % от общей его массы. При помощи силикагеля достигается глубокое осушение воздуха, характеризуемое конечным влагосодержанием 0,02 г/кг, чему соответствует температура точки росы осушенного воздуха минус 50 °С. Однако по мере увлажнения силикагеля эффективность осушки уменьшается, и при достижении предельной влажности слой сорбента прекращает поглощение влаги из воздуха. Для восстановления адсорбционных свойств сорбент подвергают активации путем удаления из капилляров накопившейся в них влаги. Активацию производят нагревом сорбента до температуры выше 100 °С или продувкой через слой сорбента горячего воздуха, имеющего температуру 150…180 °С.

Сущность адсорбции влаги из воздуха состоит в следующем. Водяной пар, адсорбированный поверхностью капилляра и сконденсировавшийся на ней, образуют в капилляре вогнутый мениск воды. Парциальное давление насыщенного водяного пара над вогнутой поверхностью воды ниже, чем над плоской поверхностью при той же температуре. Вследствие этого пар из воздуха будет диффундировать в полость капилляров и там конденсироваться. Интенсивность осушки воздуха твердыми сорбентами определяется разностью парциальных давлений насыщенного водяного пара над поверхностью мениска в капилляре и водяного пара в осушаемом воздухе. Этот перепад давлений зависит от диаметра капилляров, определяющих кривизну мениска, температуры и влагосодержания осушаемого воздуха. При повышении температуры воздуха или снижении парциального давления водяного пара в осушаемом воздухе интенсивность осушки снижается, так как в результате действия каждого из этих факторов уменьшается разность между парциальными давлениями водяного пара в осушаемом воздухе и на поверхности мениска в капилляре. При некоторой температуре эти давления могут стать одинаковыми, и тогда перенос влаги прекратится. При дальнейшем повышении температуры сорбента парциальное давление насыщенного водяного пара над мениском воды в капиллярах станет выше давления водяного пара в воздухе, и тогда начинается обратный процесс переноса влаги из капилляров сорбента в воздух. Это свойство используется при восстановлении влагопоглотительной способности (активации) сорбентов.

В процессе тепло-и массообмена при осушении воздуха адсорбентами выделяется теплота сорбции, которая состоит из скрытой теплоты конденсации и теплоты смачивания, освобождавшейся при контакте жидкой и твердой поверхностей. В результате преобразования скрытой теплоты в явную температура осушаемого воздуха повышается и может достигнуть 40…50 °С, что является недостатком твердых сорбентов. Обычно процесс осушения воздуха адсорбентами изображается в I-d диаграмме по линии I = const.

Осушка воздуха производится с помощью аппаратов двух видов: с непрерывно вращающимся поглощающим слоем и с неподвижным слоем. В аппаратах первого типа около 75 % адсорбента постоянно находится в потоке осушаемого воздуха, а 25 %, проходя через поток горячего воздуха, отдает влагу и восстанавливает свою поглощающую способность. В аппаратах второго типа адсорбирующий материал неподвижен, одна его часть поглощает влагу, а другая в это время находится в процессе десорбции. Переключение с режима поглощения на режим десобции производится через определенный промежуток времени системой автоматики.

Расчет адсорбционных установок.Расчет адсорбционной установки сводится к определению необходимого количества сорбента, площади лобового сечения слоя сорбента и его толщины.

Количество влаги, подлежащей удалению из воздуха равно:

 

W = G (d1 − d2)∙τc,

 

где G − расход воздуха, кг/с; d1, d2 − соответственно начальное и конечное влагосодержание воздуха, кг/кг; τc − длительность цикла адсорбции влаги, с;

 

Требуемая масса Gс и объем Vc адсорбента определяется по формулам:

 

Gс = W/αс;

 

Vc = Gсс,

 

где αc − сорбционная способность, для силикагеля αc = 0,1; ρс − плотность насыпного слоя сорбента, кг/м3, для силикагеля ρс = 600 кг/м3.

 

Фильтрующая поверхность Fс, определяется из формулы:

 

,

где w – скорость воздуха, м/с.

 

Толщина слоя адсорбента равна:

Приблизительно толщину слоя при w = 0,15…0,5 м/с можно определить по приблизительной формуле:

δс = 0,07(d1 − d2)∙τC∙w.

 

Аэродинамическое сопротивление слоя силикагеля определяется по формуле:

Δр = 9,81δс∙w1,5

 

Осушка воздуха жидкими сорбентами.Для осушки воздуха часто применяют раствор хлористого лития, хлористого калия и др.

По физическому содержанию процессы тепловлагообмена между воздухом и раствором при их взаимодействии аналогичны процессам тепловлагообмена между воздухом и водой, однако при взаимодействии растворов происходят физико-химические процессы. Упругость водяных паров над раствором заметно выше, чем над водой при той же температуре, и зависит от концентрации и температуры раствора. Под концентрацией раствора понимают отношение массы растворенного вещества gс к массе раствора Gр = W + gс.

Теплообмен между воздухом и раствором характеризуется переносом явной теплоты за счет разности температур поверхности раствора и обрабатываемого воздуха, а также теплоты гидратации, конденсации водяного пара, растворения соли и разбавления раствора.

Осушка воздуха абсорбентами производится в контактных аппаратах. Вместо воды в аппарат подается жидкий сорбент. В воздухоосушительной установке в процессе взаимодействия воздуха и раствора изменяется состояние того и другого. Раствор отнимает теплоту и влагу, вследствие чего нагревается и разбавляется водой. Увеличение температуры раствора ограничивают – 2…3 ºС, а уменьшение концентрации раствора – 0,2…0,3 %. При расчетах процесса осушки воздуха растворами сорбентов принимают коэффициент орошения воздуха раствором:

,

 

где I1, I2 – энтальпия воздуха соответственно до и после взаимодействия с раствором, кДж/кг; twн, twн – температура раствора соответственно до и после взаимодействия с воздухом, ºС; ср – теплоемкость раствора, кДж/(кг∙К).

Конечная концентрация раствора на выходе из воздухоосушительной установки выражается уравнением:

 

где d1, d2 – влагосодержание воздуха соответственно до и после взаимодействия с раствором, кг/кг.

 

Количество раствора, которое должно циркулировать в системе, определяется допустимым уменьшением концентрации раствора в результате поглощения влаги из воздуха. Такое уменьшение концентрации ΔКр принимается равным 0,002…0,003. С учетом этого количество раствора определяется по формуле:

 

где W – количество воды, кг; gс – масса растворенной соли, кг; L – расход воздуха, кг/ч.

 

Степень охлаждения жидкого раствора можно регулировать в широких пределах, отводя частично или полностью теплоту сорбции. В этом случае могут быть осуществлены как изотермический процесс осушения воздуха, так и процессы с повышением и понижением температуры. На рис. показаны процессы осушения воздуха жидкими сорбентами:

- процесс при постоянной температуре может быть реализован, если от жидкого сорбента в процессе сорбции будет полностью отводиться теплота сорбции (процесс 1-2);

- процесс с повышением температуры возможен, если от сорбента теплота сорбции отводится частично (процесс 1-3);

- процесс с понижением температуры возможен, если не только полностью отводить теплоту сорбции, но и охлаждать раствор (процесс 1-4).

Поскольку концентрация раствора в процессе работы воздухоосушительной установки снижается, ее необходимо восстанавливать до начального значения. Чаще других применяют выпаривание влаги из кипящего раствора или ее испарение. С помощью водных растворов солей можно осуществлять процессы тепловлажностной обработки воздуха, которые невозможно реализовать с помощью поверхностных и водоконтактных аппаратов (изотермическая осушка воздуха, осушка с повышением температуры, осушка с небольшим понижением температуры). При использовании растворов солей оказывается возможным осушать воздух без применения искусственных источников холода или при экономном режиме работы холодильных машин. Кроме того, при осушке воздуха растворами отпадают лишние расходы теплоты и холода, необходимые при осушке воздуха водой. Растворы этих солей не ядовиты, но агрессивны по отношению к металлам, что является существенным недостатком.

Контроль влажности. Решения для мясной промышленности

Процесс обработки мяса требует соблюдения строгих норм гигиены для получения качественной продукции. Поскольку мясные продукты обрабатываются в холодных помещениях, производители часто сталкиваются с проблемой повышенной влажности и образования конденсата.

Почему возникают проблемы с конденсацией?
Конденсат образовывается, если точка росы воздуха выше, чем температура поверхностей в помещении. При контакте с такими поверхностями воздух охлаждается, влага, содержащаяся в нем, превращается в конденсат. Вода создает риск роста бактерий в неупакованной продукции и плесени в стенах. Как иллюстрацию данной ситуации рассмотрим камеру хранения готовой продукции. В помещение с температурой в несколько градусов по Цельсию помещается несколько тонн готовых колбасных изделий. Температура и влажность в камере мгновенно повышаются, однако при дальнейшем охлаждении эта влага конденсируется на холодных поверхностях комнаты. Результат – скользкие полы, влага на потолке и стенах, иней на холодильном оборудовании. Необходимо выключать оборудование, мыть камеру и ждать ее высыхания. Решение данной проблемы – понизить точку росы воздуха в камере, т.е. убрать из него лишнюю влагу. Для этого Вам необходим осушитель воздуха.

Сухой воздух дает мясоперерабатывающим предприятиям ряд преимуществ:

• Поверхности без конденсации. Для этого достаточно поддерживать значение относительной влажности на уровне 55–60%

• Более быстрое высыхание помещений после мытья. Снижается время простоев до минимума.

• Обеспечивается более приятная рабочая среда для людей, работающих в помещении.

• Отсутствие влажных полов в помещении.

• Снижается количество остановок холодильного оборудования

 

 

 



Дата добавления: 2020-10-01; просмотров: 397;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.