ЭНЕРГЕТИКА МЫШЕЧНОГО СОКРАЩЕНИЯ


 

При работе мыши, химическая энергия превращается в механичес­кую, т. е. мышца является химическим двигателем, а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия. АТФ. Расщепление АТФ с отсоединением одной молеку­лы фосфата и образованием аденозиндифосфата (АДФ) сопровожда­ется выделением 10 ккал энергии на 1 моль: АТФ = АДФ + Ф + Эн.. Однако запасы АТФ в мышцах невелики (около 5 ммоль ). Их хватает лишь на 1-2 с работы. Количество АТФ в мышцах не может изменяться, так как при отсутствии АТФ в мышцах развивается кон­трактура (не работает кальциевый насос и мышцы не в состоянии расслабляться), а при избытке — теряется эластичность.

Для продолжения работы требуется постоянное восполнение за­пасов АТФ. Восстановление АТФ происходит в анаэробных услови­ях — за счет распада креатинфосфата (КрФ) и глюкозы (реакции гликолиза) — и в аэробных условиях — за счет реакций окисления жиров и углеводов. Энергосистемы, используемые в качестве ис­точников энергии, обозначают как фосфагеиная энергетическая си­стема или система АТФ-КрФ, гликолитическая (или лактацидная) система и окислительная (или кислородная) система.

Быстрое восстановление АТФ происходит в тысячные доли секунды за счет распада КрФ. АДФ + КрФ = АТФ + Кр. Наи­большей эффективности этот путь энергообразования достигает к 5-6-й секунде работы, но затем запасы КрФ исчерпываются, так каких также немного (около 30 ммоль ).

Медленное восстановление АТФ в анаэробных условиях обеспечивается энергией расщепления глюкозы (выделяемой из глико­гена) —реакцией гликолиза с образованием в конечном итоге молоч­ной кислоты (лактата) и восстановлением 3 молекул АТФ. Эта реак­ция достигает наибольшей мощности к концу 1-й минуты работы.

Особое значение этот путь энергообразования имеет при высокой мощности работы, которая продолжается от 20 с до 1 -2 мин (напри­мер, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее напряженной работы (спурты и финишные ускорения при беге на длинные дистанции) и при недо­статке кислорода во время выполнения статической работы. Ограни­чение использования углеводов связано не с уменьшением запасов гликогена (глюкозы) в мышцах и в печени, а с угнетением реакции гликолиза избытком накопившейся в мышцах молочной кислоты.

Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т. е. при аэробной работе длительностью более 2-3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислород транспортных систем организма (дыхательной, сердечно-сосудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина по­ступления в организм кислорода за 1 мин — максимальное по­требление кислорода (МПК). Эта величина зависит от индивидуальных возможностей каждого человека. У нетренированных лиц в 1 мин поступает к работающим мышцам около 2.5-3 л О , а у высококвалифицированных спортсменов —лыжников, пловцов, бегунов-стайеров и др. достигает 5-6 л и даже 7л в 1 мин.

При значительной мощности работы и огромной потребности при этом в кислороде основным субстратом окисления в большинстве спортивных упражнений являются углеводы, так как для их окисления требуется гораздо меньше кислорода, чем при окислении жиров. При использовании одной молекулы глюкозы ( ), полученной из гликогена, образуется 38 молекул АТФ, т.е. аэробный путь энергообра­зования обеспечивает при том же расходе углеводов во много раз больше продукции АТФ, чем анаэробный путь. Молочная кислота в этих реакциях не накапливается, а промежуточный продукт — пировиноградная кислота сразу окисляется до конечных продуктов — СО , и Н О.

В качестве источника энергии жиры используются в состоянии двигательного покоя, при любой работе сравнительно невысокой мощности (требующей до 50% МПК) и при очень длительной работе на выносливость (требующей около 70-80% МПК). Среди всех ис­точников энергии жиры обладают наибольшей энергетической емко­стью: при расходовании 1 моля АТФ выделяется около 10 ккал энергии, 1 моля КрФ —около 10.5 ккал, 1 моля глюкозы при анаэ­робном расщеплении — около 50 ккал, а при окислении 1 моля глю­козы — около 700 ккал, при окислении 1 моля жиров — 2400 ккал (Коц Я. М., 1982). Однако использование жиров при работе высо­кой мощности лимитируется трудностью доставки кислорода рабо­тающим тканям.

Работа мышц сопровождается выделением тепла. Теплообразова­ние происходит в момент сокращения мышц — начальное теплообра­зование (оно составляет всего одну тысячную всех энерготрат) и в пе­риод восстановления — запаздывающее теплообразование.

В обычных условиях при работе мышц тепловые потери состав­ляют около 80% всех энерготрат. Для оценки эффективности меха­нической работы мышцы используют вычисление коэффициента полезного действия (КПД). Величина КПД показывает, какая часть затрачиваемой энергии используется на выполнение механичес­кой работы мышцы. Ее вычисляют по формуле:

КПД=[А:(Е-е)] ,

где: А — энергия, затраченная на полезную работу; Е — общий расход энергии; е —расход энергии в состоянии покоя за время, равное длитель­ности работы.

У нетренированного человека КПД примерно 20%, у спортсмена — 30-35%. При ходьбе наибольший КПД отмечается при скорости 3.6-4.8 км • час , при педалировании на велоэргометре — при длительно­сти цикла около 1 с. С увеличением мощности работы и включением «ненужных» мышц КПД уменьшается. При статической работе, по­скольку А = 0, эффективность работы оценивается по длительности поддерживаемого напряжения мышц.

 



Дата добавления: 2019-02-08; просмотров: 1158;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.