Атомная энергетика.


Основными ресурсом (топливом), потребляемым на АЭС являются.

Природный уран — это смесь в основном неделящегося изотопа урана 238U (более 99 %) и делящегося изотопа 235U (0,71 %), который соответственно и представляет собой ядерное горючее. Для работы реакторов АЭС требуется обогащение урана. Для этого природный уран направляется на обогатительный завод, после переработки на котором 90 % природного обедненного урана направляется на хранение, а 10 % приобретают обогащение до нескольких процентов (3,3—4,4 % для энергетических реакторов).

Обогащенный уран (точнее — диоксид урана) направляется на завод, изготавливающий твэлы — тепловыделяющие элементы. Из диоксида урана изготавливают цилиндрические таблетки диаметром около 9 мм и высотой 15—30 мм. Эти таблетки помещают в герметичные тонкостенные циркониевые трубки длиной почти в 4 м. Это и есть твэлы. Твэлы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук, которые удобно помещать и извлекать из активной зоны реактора.

Все дальнейшие процессы «горения» — расщепления ядер 235U с образованием осколков деления, радиоактивных газов, распуханием таблеток и т.д. происходят внутри трубки твэла, герметичность которой должна быть гарантирована.

После постепенного расщепления 235U и уменьшения его концентрации до 1,26 %, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора, некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

 

На атомных станция в России используются ядерные реакторы следующих типов:

• РБМК (реактор большой мощности, канальный) — реактор на тепловых нейтронах, водографитовый;

• ВВЭР (водо-водяной энергетический реактор) — реактор на тепловых нейтронах, корпусного типа;

• БН (быстрые нейтроны) — реактор на быстрых нейтронах с жидкометаллическим натриевым теплоносителем

 

Принципиальная схема ядерного реактора на так называемых тепловых (медленных) нейтронах показана на рисунке. Расщепление ядра делящегося элемента происходит вследствие попадания в него нейтрона. При этом возникают движущиеся с большой скоростью осколки деления (ядра других элементов) и 2—3 новых нейтрона. Последние способны вызывать деление новых ядер и характер дальнейшего процесса будет зависеть от характера изменения баланса нейтронов. Если из образующихся после каждого акта расщепления ядра 2—3 нейтронов, 1—2 нейтрона будут «погибать» (т.е. не вызывать акта следующего деления), то оставшийся и расщепивший следующее ядро 1 нейтрон будет постоянно «поддерживать» их существование. Если, например, в некоторый начальный момент существовало 100 нейтронов, то при описанных выше условиях этот уровень нейтронов будет поддерживаться постоянным, и реакция деления будет носить стационарный характер. Если число нейтронов будет увеличиваться, то произойдет тепловой взрыв, если уменьшаться, то реакция прекратится (или перейдет на меньший уровень тепловыделения). Чем выше стационарный уровень числа существующих нейтронов, тем больше мощность реактора.

Образующиеся в результате деления нейтроны могут быть быстрыми (т.е. иметь большую скорость) и медленными (тепловыми). Вероятность захвата медленного нейтрона ядром и его последующего расщепления больше, чем быстрого нейтрона. Поэтому твэлы окружают замедлителем (обычно это вода, графитовая кладка и другие материалы). Быстрые нейтроны замедляются, и поэтому рассматриваемые ниже энергетические реакторы относятся к реакторам на медленных (тепловых) нейтронах.

Изменяют мощность реактора с помощью стержней системы регулирования и защиты (СУЗ), выполненных из материалов хорошо поглощающих нейтроны. При опускании стержней (см. рис. 5.3) поглощение нейтронов увеличивается, общее число нейтронов уменьшается, и мощность реактора также уменьшается вплоть до полной остановки.

Количество стационарно существующих нейтронов определяет число образующихся осколков деления ядер, которые разлетаются в разные стороны с огромной скоростью. Торможение осколков приводит к разогреву топлива и стенок твэлов. Для снятия этого тепла в реактор (см. рис. 5.3) подается теплоноситель, нагрев которого и представляет цель работы ядерного реактора. В наиболее распространенных типах ядерных реакторов в качестве теплоносителя используют обычную воду, естественно, высокого качества.

Практически вся мировая атомная энергетика базируется на корпусных реакторах. Как следует из самого названия, их главной особенностью является использование для размещения активной зоны толстостенного цилиндрического корпуса.

В свою очередь корпусные реакторы выполняют с водой под давлением (в английской транскрипции PWR — pressed water reactor, в русской ВВЭР — водо-водяной энергетический реактор), и кипящие (BWR — boiling water reactor). В водо-водяном реакторе циркулирует только вода под высоким давлением. В кипящем реакторе в его корпусе над поверхностью жидкости образуется насыщенный водяной пар, который направляется в паровую турбину. В корпусных реакторах и теплоносителем, и замедлителем является вода.

Альтернативой корпусным реакторам являются канальные реакторы, которые строили только в Советском Союзе под названием РБМК — реактор большой мощности канальный. Такой реактор представляет собой графитовую кладку с многочисленными каналами, в каждый из которых вставляется как бы небольшой кипящий реактор малого диаметра. Замедлителем в таком реакторе служит графит, а теплоносителем — вода.

 

На рисунке представлен водо-водяной энергетический реактор.

Корпус реактора состоит из цилиндрического сосуда 4 (см. рис. 5.4) и крышки 3, притягиваемой к сосуду многочисленными шпильками 2 со специальными колпачковыми гайками. В сосуде подвешивается шахта 5, представляющая собой тонкостенный сосуд с уплотнением 6 и системой отверстий, обеспечивающих направленное движение теплоносителя. Теплоноситель (вода) с давлением 15,7 МПа и температурой 289 °С поступает по четырем штуцерам в кольцевое пространство между корпусом и шахтой и движется вниз между ними. На этой стадии вода выполняет функцию отражателя нейтронов. Дно шахты 5 имеет многочисленные отверстия, через которые вода попадает внутрь шахты, где располагается активная зона, состоящая из отдельных шестигранных ТВС (тепловыделяющих сборок), каждый из которых содержит 312 твэлов.

Поступивший через перфорированное дно шахты теплоноситель движется вверх, омывает твэлы, разогретые процессом деления ядерного горючего, нагревается и с температурой 322,5 °С через перфорации в верхней части шахты и четыре выходных отверстия направляется в четыре парогенератора.

Масса корпуса без крышки превышает 300 т, а крышки и шпилек достигает 100 т.

 

Реактор большой мощности канальный.

Он состоит из собственно реактора 1, барабанов-сепараторов 3, главных циркуляционных насосов 6 и водяных и пароводяных коммуникаций.

Активная зона реактора представляет собой графитовую кладку из блоков сечением 250x250 мм. В центре каждого блока выполнено вертикальное отверстие (канал), в которое помещается парогенерирующее устройство. Совокупность парогенерирующего устройства, кладки и элементов их установки называют технологическим каналом. Внутри центральной части трубы подвешивается ТВС, состоящая из двух последовательно расположенных пучков. Каждый пучок состоит из 18 стержневых твэлов наружным диаметром 13,6 мм, толщиной стенки 0,9 мм и длиной 3,5 м.

В нижнюю концевую часть трубы каждого канала поступает вода от главного циркуляционного насоса (ГЦН) (см. рис. 5.11) и движется вверх, омывая пучки ТВС. При этом вода нагревается до состояния кипения, частично испаряется и с массовым паросодержанием примерно 15 % направляется в барабан-сепаратор 5 (см. рис. 5.11). Здесь вода и пар разделяются: пар направляется в паровую турбину, а вода с помощью ГНЦ снова возвращается в технологические каналы.

Активная зона (графитовая кладка) окружается стальным герметичным кожухом и заполняется смесью гелия и азота при небольшом избыточном давлении.

 

На слайде показана схема одноконтурных АЭС, построенных в России с реакторами РБМК-1000 на трех АЭС. Одноконтурной она называется потому, что и через реактор, и через паротурбинную установку циркулирует одно и то же рабочее тело.

Питательная вода с помощью главного циркуляционного насоса (ГЦН) с параметрами 80 ат и 265 °С из раздаточного коллектора подводится к многочисленным (в РБМК-1000 их 1693) параллельным технологическим каналам, размещенным в активной зоне реактора (ЯР). На выходе из каналов пароводяная смесь с паро-содержанием 14—17 % собирается в коллекторе и подается в барабан-сепаратор (у РБМК-1000 их четыре). Барабан-сепаратор (БС) служит для разделения пара и воды. Образующийся пар с параметрами 6,4 МПа (65 ат) и 280 °С направляется прямо в паровую турбину (реактор РБМК-1000 в номинальном режиме питает две одинаковые паровые турбины мощностью по 500 МВт каждая).

Пар, получаемый в реакторе и в сепараторе, является радиоактивным вследствие наличия растворенных в нем радиоактивных газов, причем именно паропроводы свежего пара обладают наибольшим радиоактивным излучением. Поэтому их прокладывают в специальных бетонных коридорах, служащих биологической защитой. По этой же причине пар к турбине подводится снизу, под отметкой ее обслуживания (пола машинного зала).

Пар, расширившийся в ЦВД до давления 0,35 МПа (3,5 ат), направляется в сепаратор-пароперегреватель (СПП) (на каждой турбине энергоблока с реактором РБМК-1000 их четыре), а из них — в ЦНД (на каждой турбине их также четыре) и в конденсаторы. Конденсатно-питательный тракт такой же, как у обычной ТЭС. Однако многие его элементы требуют биологической защиты от радиоактивности. Это относится к конденсатоочистке и водяным емкостям конденсатора, где могут накапливаться радиоактивные продукты коррозии, подогревателям регенеративной системы, питаемым радиоактивным паром из турбины, сборникам сепарата CПП. Одним словом, и устройство, и эксплуатация одноконтурных АЭС, особенно в части машинного зала, существенно сложнее, чем двухконтурных.

Конденсат, пройдя систему регенеративного подогрева воды, приобретает температуру 165 °С, смешивается с водой, идущей из барабана-сепаратора (280 °С) и поступает к ГЦН, обеспечивающим питание ядерного реактора.

 

На следующем слайде мы видим схему двухконтурной АЭС с водо-водяным реактором типа ВВЭР.

Реакторы типа ВВЭР используют для строительства двухконтурных АЭС. Как следует из названия, такая АЭС состоит из двух контуров. Первый контур расположен в реакторном отделении. Он включает реактор типа ВВЭР, через который с помощью главного циркуляционного насоса ГЦН прокачивается вода под давлением 15,7 МПа (160 ат). На входе в реактор вода имеет температуру 289 °С, на выходе — 322 °С. При давлении в 160 ат вода может закипеть только при температуре 346 °С и, таким образом, в первом контуре двухконтурной АЭС всегда циркулирует только вода без образования пара.

Из ядерного реактора вода с температурой 322 °С поступает в парогенератор. Парогенератор — это горизонтальный цилиндрический сосуд (барабан), частично заполненный питательной водой второго контура; над водой имеется паровое пространство. В воду погружены многочис­ленные трубы парогенератора ПГ, в которые поступает вода из ядерного реактора. Можно сказать, что парогенератор — это кипятильник, выпаривающий воду при повышенном давлении. С помощью питательного насоса ПН и соответствующего выбора турбины в парогенераторе создается давление существенно меньшее, чем в первом контуре (для реактора ВВЭР-1000 и турбины мощностью 1000 МВт это давление свежего пара р0 = 60 ат). Поэтому уже при нагреве до 275 °С в соответствии вода в парогенераторе закипает вследствие нагрева ее теплоносителем, имеющим температуру 322 °С. Таким образом, в парогенераторе, являющимся связывающим звеном первого и второго контура (но расположен­ном в реакторном отделении), генерируется сухой насыщенный пар с давлением р0 = 60 ат и температурой t0 = 275 °С (свежий пар). Если говорить строго, то этот пар — влажный, однако его влажность мала (0,5 %). И сейчас мы отмечаем первую особенность АЭС — низкие начальные параметры и влажный пар на входе в турбину.

Этот пар направляется в ЦВД паровой турбины. Здесь он расширяется до давления примерно 1 МПа (10 ат). Выбор этого давления обусловлен тем, что уже при этом давлении влажность пара достигает 10—12 %, и капли влаги, движущиеся с большой скоростью, приводят к интенсивной эрозии и размывам деталей проточной части паровой турбины.

Поэтому из ЦВД пар направляется в сепаратор-пароперегреватель (СПП). В сепараторе С от пара отделяется влага, и он поступает в пароперегреватель, где его параметры доводятся до значений 10 ат, 250 °С. Таким образом, пар на выходе из СПП является перегретым, и эти параметры выбраны такими, чтобы получить допустимую влажность в конце турбины, где угроза эрозии еще большая, чем за ЦВД. Пар с указанными параметрами поступает в ЦНД (в энергоблоке 1000 МВт три одинаковых ЦНД, на рис. 5.14 показан только один). Расширившись в ЦНД, пар поступает в конденсатор, а из него в конденсатно-питательный тракт, аналогичный тракту обычной ТЭС.

Важно отметить, что во втором контуре циркулирует нерадиоактивная среда, что существенно упрощает эксплуатацию и повышает безопасность АЭС.

 

Далее — схема АЭС с жидкометаллическим реактором на быстрых нейтронах.

Реактор типа БН имеет активную зону, где происходит ядерная реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из 238U и превращают его в плутоний 239Pu, который может быть впоследствии использован на АЭС в качестве ядерного горючего. Тепло ядерной реакции отводится жидки натрием и используется для выработки электроэнергии.

Схема АЭС с реактором БН трехконтурная. В двух из них используется жидкий натрий.

 

Преимущества АЭС и отсутствие серьезных аварий в первые 20 лет их развития обусловили бурное строительство АЭС в период 1970—1980 гг.

В 1979 г. на АЭС «Три Майл Айленд» (США) произошла серьезная авария с расплавлением активной зоны реактора. Защитная оболочка реактора не допустила значительных выходов радиоактивности за его пределы, но впервые заставила энергетиков задуматься о необходимости самого пристального внимания к безопасности АЭС. Принятые меры по увеличению безопасности АЭС привели к заметному удорожанию их электроэнер­гии, а одновременно наложившееся падение цен на нефть на мировом рынке вызвало временный переизбыток энергетических мощностей, приведшее к сокращению заказов на строительство. Так, в период 1979—1984 гг. было аннулировано около 70 заказов на ядерные реакторы.

Еще более серьезный удар развитию атомной энергетики нанесла авария на Чернобыльской АЭС в 1986 г. и ее катастрофические последствия. В ряде стран был принят мораторий на строительство новых АЭС, но в таких странах как Франция, Япония (до последнего времени) атомная энергетика продолжает развиваться. В 1999 г. вошли в строй четыре АЭС (во Франции, Индии, Корее и Словакии). Начато строительство семи новых АЭС (по две в Японии, на Тайване, в Корее и одна в КНР). В ближайшие годы в мире планируется ввести 38 новых АЭС.

Судьбы российской и мировой атомной энергетики в определенной степени схожи. В 1970—1980гг. было введено 7 млн кВт новых мощностей на АЭС и в последующее десятилетие планировалось ввести в эксплуатацию в бывшем СССР еще 28 млн кВт, однако в силу причин, отмеченных выше, введено было в 2 раза меньше. В период 1990—2000 гг. заканчивалось строительство нескольких энергоблоков ранее построенных АЭС.

В 2001 г. после долгого перерыва (с 1993 г., когда на Балаковской АЭС был введен в эксплуатацию четвертый энергоблок мощностью 1 млн кВт) запущен в работу первый энергоблок Ростовской АЭС. В дальнейшем планируется ежегодно в ближайшие 5 лет вводить по одному энергобло­ку мощностью 1 млн кВт.

Оценка потенциала строительства АЭС в России вплоть до 2020 г. по данным Минатома представлена на следующем слайде.

 



Дата добавления: 2020-10-14; просмотров: 445;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.