Явление ядерной изомерии
Время жизни ядер в возбужденных состояниях колеблется в пределах 10‑14 ÷ 10-7с. В редких случаях сочетания низкой энергии с высокой степенью запрета перехода могут наблюдаться возбужденные состояния со временами жизни макроскопического порядка, измеряемые секундами, часами, а иногда и годами. Такие состояния называют метастабильньми, а соответствующие уровни энергии – изомерными уровнями. Ядро нуклида в метастабильном состоянии и это же ядро в основном энергетическом состоянии образуют изомерную пару, ядра которой называются изомерами. Часто изомером называют возбужденное метастабильное ядро из изомерной пары. Ядерные изомеры наблюдаются как среди стабильных, так и преимущественно среди β-активных нуклидов. У стабильного нуклида один из изомеров стабилен, а второй распадается с испусканием γ-кванта. Но у β- активного нуклида изомерный уровень не обязательно обращается в основное состояние с испусканием γ-кванта, а может претерпевать β-распад со своим типом и периодом полураспада, отличными от характеристик распада основного состояния. Различие во временах жизни ядер изомерной пары может изменяться в широких пределах от долей секунды до многих лет.
На рисунке 2 показан смешанный распад метастабильного уровня ядра 85Kr. Из-за большой разности спинов изомеров только в 19 % происходит γ-переход и образование изомера с низшей энергией, а в 81 % β--распад с образованием ядра 85Kr в возбужденном состоянии. Обращает внимание большое различие в периодах полураспада из основного и возбужденного состояний.
Рисунок 2. Смешанный распад метастабильного уровня ядра 85Kr |
Как правило, изомерное состояние относится к первому возбужденному уровню ядра. Обычно изомерные ядра – ядра с числами нуклонов от 30 до 49, от 69 до 81 и от 111до 125 (только для нейтронов), т.е. при числах протонов и нейтронов, предшествующих магическим числам 50, 82, 126. Такое распределение изомеров находится в хорошем согласии с моделью оболочек. В этих областях значений N или Z оболочечные уровни, близкие друг к другу по энергии, сильно различаются значениями спинов, так как принадлежат состояниям с разными значениями главных квантовых чисел (см. модель ядерных оболочек). Например, ядро у которого не хватает одного протона до Z = 50 (т.е. для замыкания соответствующей оболочки), имеет в основном состоянии характеристику 9/2+, а первый возбужденный уровень имеет энергию 336 кэВ с характеристикой . Переход между этими уровнями может происходить, согласно правилам отбора по спину и четности, лишь при испускании g-кванта М4 и запрещен настолько, что среднее время жизни возбужденного уровня оказывается равным 14,4 часа.
Эффект Мессбауэра
С g-излучением ядер связано интересное явление, носящее название эффекта Мессбауэра (Мессбауэр, 1958 г.). Эффектом Мессбауэра называется резонансное поглощение g-квантов без отдачи. Этот эффект является ядерным аналогом резонансной флуоресценции в атомной физике.
При испускании ядром g-квант уносит не всю энергию возбуждения Е, так как часть этой энергии Тяд (см. формулу (16.3)) идет на отдачу испускающего ядра:
(16.12) |
Для возбуждения ядра до энергии Е нужно поглотить g-квант с энергией
(16.13) |
так как согласно закону сохранения импульса часть энергия g-кванта превращается в кинетическую энергию движения ядра. В результате энергии испущенного и поглощенного g-квантов не совпадают на величину 2Тяд.
Условие резонансного поглощения может быть записано следующим образом:
Г > 2Тяд, | (16.14) |
где
Г = ћ/τ | (16.15) |
– т.н. естественная ширина линии, определяемая из соотношения неопределенностей. Чем меньше среднее время τ жизни ядра в данном возбужденном состоянии, тем больше неопределенность в значении энергии возбужденного состояния, тем более вероятно выполнение условия (16.15).
Рассмотрим в качестве примера ядро 129Ir, находящегося в возбужденном состоянии с энергией перехода 129 кэВ и средним временем жизни τ ≈ 10-10с. Расчет по формуле (16.15) дает
(16.16) |
Энергия отдачи ядра определим по формуле(16.3):
(16.17) |
Таким образом, энергия отдачи ядра существенно превышает естественную ширину линии излучения и неравенство (16.14) нарушено очень сильно. Иными словами, испущенный ядром γ-квант не может поглотиться ядром того же типа, что исключает возможность ядерной резонансной флуоресценции для свободных атомов. Отметим, что энергия оптических переходов более чем в 104 раз меньше, чем ядерных, и условие (16.15) для оптической флуоресценции выполняется с большим запасом, так как энергия отдачи (16.3) квадратично зависит от энергии перехода. Если бы удалось уменьшить энергию отдачи до величины естественной ширины линии, то измерение энергии g-квантов можно было бы проводить с относительной точностью
~ 10-12¸ 10-14. | (16.18) |
В твердых телах, имеющих кристаллическую структуру, передача энергии одному из связанных атомов вызывает, в конечном итоге, хаотические колебания большого числа окружающих атомов, т.е. увеличивает внутреннюю энергию кристалла. Представляется маловероятным возникновение упорядоченных колебаний большого коллектива атомов в кристалле от одного ядра, которое испытало испускание или поглощение γ-кванта. Однако при понижении температуры возможности колебаний отдельных атомов экспоненциально снижаются, а когда возможная кинетическая энергия колебаний отдельного атома в кристалле становится меньше энергии отдачи (16.17), большое количество атомов (~ 108 ÷ I09) имеют теперь возможность совершать согласованные колебания как единое целое. Кинетическая энергия, которую теперь приобретает кристалл, воспринимая импульс отдачи, пренебрежимо мала из-за громадной массы кристалла, по сравнению с массой отдельного атома. Охлаждая источник и поглотитель до температуры жидкого азота, Мессбауэр впервые наблюдал испускание и поглощение g-квантов без отдачи и доказал возможность указанной выше исключительно высокой точности измерения энергии g-квантов. Позже было обнаружено, что для γ-переходов с очень низкой энергией (Еγ = 14,4 кэВ, τ = 1,4·10-7с для 57Fe и Eγ = 23,9 кэВ, τ = 2,8·10-8с для 119Sn) эффект Мессбауэра можно наблюдать при комнатных температурах (до 1000 К). Эти нуклиды в настоящее время чаще всего используются в задачах ядерной физики и физике твердого тела.
Схема опыта по обнаружению резонансного поглощения γ-квантов следующая (см. рисунок 3).
Рисунок 3. Схема опыта по обнаружению резонансного поглощения γ-квантов
Источник g-излучения, поглотитель (содержит те же ядра, что и источник) и детектор γ-излучения располагаются на одной линии. Для обнаружения эффекта изменения поглощения оказывается достаточным перемещение источника и поглотителя относительно друг друга со скоростью в несколько мм/с.
Высокая точность измерения энергии g-квантов, присущая эффекту Мессбауэра, обеспечивает высокое разрешение спектральных исследований g-излучения.
Например, в 1959 г. Паунд и Ребка измерили смещение мессбауэровской линии в гравитационном поле Земли, используя в качестве измерительной базы башню высотой всего 22,6 м. Тем самым было экспериментально доказано в земных условиях действие гравитации (т.н. красное смещение) на фотоны, имеющие массу покоя равной нулю, предсказываемое общей теорией относительности. Прежде для этой цели использовались астрофизические измерения отклонения световых лучей далеких звезд во время солнечных затмений.
Эффект Мессбауэра позволяет наблюдать сверхтонкое расщепление ядерных уровней, вызванное взаимодействием магнитных моментов ядер с магнитным полем электронной оболочки атома, относительная величина которого составляет 10-12 ÷ 10-10, что примерно в 10-5 раз меньше соответствующей величины расщепления атомных уровней,вызванных этим же эффектом.
Не представляет труда наблюдать эффекты, вызванные действием поля электронной оболочки на ядро, такие как деформация (наклеп) материала поглотителя и его химический состав, и многое другое. Эффект Мессбауэра находит применение в биологии для установления электронной структуры гемоглобина и проведения соответствующих анализов.
Дата добавления: 2016-07-11; просмотров: 1667;