Микроклимат помещений
Тепловой гомеостаз является основным условием жизнедеятельности. Образование тепла неразрывно связано с энергетическим обменом. Фактором, обеспечивающим непрерывное течение метаболизма в органах и тканях, является определенная температура крови, которая поддерживается специализированными механизмами саморегуляции. Человек способен переносить температурные колебания внутренней среды в диапазоне от 25 до 43 °С. Температурный фактор определяет скорость протекания ферментативных процессов, всасывания, проведения возбуждения и мышечного сокращения. Температура тела человека поддерживается на постоянном уровне (37±0,5 °С) независимо от её изменения в окружающей среде. Причём эта температура выше средней температуры окружающей среды. Этот процесс называется терморегуляцией и осуществляется нервно-эндокринным путём.
Терморегyляция подразделяется на химическую (регyляция интенсивности теплообразования в организме) и физическую (теплообмен организма с окружающей средой). Теплообмен и его интенсивность изменяются в организме за счёт физиологических процессов. В состоянии покоя взрослый человек вырабатывает за 1 час 88-105 Вт тепловой энергии, при тяжёлой работе 300-400 Вт, а при максимально возможных кратковременных нагрузках – до 1000 Вт. Избыточная тепловая энергия, выделяемая человеком, должна быть передана окружающей среде за счёт физических процессов теплообмена. Интенсивность теплообмена организма с окружающей средой зависит от параметров (показателей) микроклимата и осуществляется следующими основными путями: конвекция; радиационный теплообмен; испарение воды с поверхности кожного покрова и др.
Конвекция представляет собой процесс передачи тепла от более нагретого тела (тело человека) менее нагретому телy (окружающая среда) веществом (воздухом). Если температура окружающей среды выше температуры тела человека, то процесс идёт в обратном направлении. Тепло, поступающее в производственное помещение от различных источников, влияет на температуру воздуха в нем. В производственных помещениях с большим тепловыделением приблизительно 2/3 тепла поступает за счет излучения, а практически все остальное количество приходится на долю конвекции. Количество тепла, переданного окружающему воздуху конвекцией (QK, Вт), при непрерывном процессе теплоотдачи может быть рассчитано по закону теплоотдачи Ньютона, который для непрерывного процесса теплоотдачи записывается в виде:
, (5.1)
где α – коэффициент конвекции, Вт/(м2·град); S – площадь теплоотдачи, м2; t – температура источника, °С; tB, – температура окружающего воздуха, °С.
Источником теплового излучения в производственных условиях является расплавленный или нагретый металл, открытое пламя, нагретые поверхности оборудования.
Количество тепла, переданного посредством излучения (Qи, Дж) от более нагретого твердого тела с температурой T1 к менее нагретому телу с температурой T2, определяется по уравнению:
, (5.2)
где S – поверхность излучения, м2; τ – время, с; C1-2 – коэффициент взаимного излучения, Вт/(м2·К4); Θ – средний угловой коэффициент, определяемый формой и размерами участвующих в теплообмене поверхностей, их взаимным расположением в пространстве и расстоянием между ними.
Радиационный теплообмен представляет собой процесс передачи тепла от более нагретого тела (тело человека) менее нагретому телу (окружающая среда) инфракрасным электромагнитным излyчением. Тепло при этом передаётся не воздуху, а предметам (например, стенам, полy, оборудованию и т. п.), температура которых меньше температуры тела человека. Если температура окружающих предметов выше температуры тела человека, то процесс идёт в обратном направлении.
Теплоотдача от организма человека в окружающую среду происходит следующими путями: в результате теплопроводности через одежду (Qt); конвекции тела (QК) излучения на окружающие поверхности (QИ), испарения влаги с поверхности кожи (Qисп), а также за счет нагрева выдыхаемого воздуха (QB), т. е.:
Qобщ = QT + QK + QИ + Qисп + QВ. (5.3)
Представленное уравнение носит название уравнения теплового баланса. Вклад перечисленных выше путей передачи тепла непостоянен и зависит от параметров микроклимата в производственном помещении, а также от температуры окружающих человека поверхностей (стен, потолка, оборудования). Если температура этих поверхностей ниже температуры человеческого тела, то теплообмен излучением идет от организма человека к холодным поверхностям. В противном случае теплообмен осуществляется в обратном направлении – от нагретых поверхностей к человеку. Теплоотдача конвекцией зависит от температуры воздуха в помещении и скорости его движения на рабочем месте, а отдача теплоты путем испарения – от относительной влажности и скорости движения воздуха. Основную долю в процессе отвода тепла от организма человека (порядка 90 % общего количества тепла) вносят излучение, конвекция и испарение.
Теплоотдача испарением воды с поверхности кожного покрова происходит за счёт большой теплоты испарения воды (2,3·106 Дж/кг). Испарительная же теплоотдача регyлируется достаточно эффективно, так как количество воды, подаваемой через поры кожного покрова для испарения, изменяется в широком диапазоне. При температуре воздуха ~30 °С и тяжёлой мышечной работе за один рабочий день может выделиться ~10÷12 л жидкости, при испарении которого в окружающую среду рассеивается ~ 2,5·107 Дж тепловой энергии, что соответствует затрачиваемой мощности ~ 870 Вт. К поверхности тела потоки тепла переносятся в основном кровью. Кровоток значительно варьирует при изменении просвета сосудов, в частности, состояния артериоло-венулярных анастомозов. Механизмы теплоотдачи в условиях пониженной и повышенной температуры окружающей среды представлены на рис. 5.1.
Рис. 5.1. Механизмы теплоотдачи в условиях пониженной и повышенной температуры окружающей среды
Конвективный и радиационный теплообмены являются пассивными, так как на их интенсивность организм человека влиять практически не может (за исключением применения одежды с различными теплоизоляционными свойствами).
Поскольку, как было отмечено выше, температуры тела человека выше средней температуры окружающей среды, он практически всегда отдаёт ей избыточное тепло. Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Установлено, что при температуре воздуха более 25 °С работоспособность человека начинает падать. Предельная температура вдыхаемого воздуха, при которой человек, в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116 °С. Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела.
Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при tос > 30 °С, так как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу. Вместе с потом организм теряет значительное количество минеральных солей, микроэлементов и водорастворимых витаминов (С, В1, В2).
При неблагоприятных условиях потеря жидкости может достигать 8...10 л за смену и с ней до 40 г поваренной соли (всего в организме около 140 г NаС1). Потери более 30 г NaСl крайне опасны для организма человека, так как приводят к нарушению желудочной секреции, мышечным спазмам, судорогам. Компенсация потерь воды в организме человека при высоких температурах происходит за счет распада углеводов, жиров и белков. Для восстановления водносолевого баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NаСl) газированной питьевой водой из расчета 4...5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.
Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня – гипертермии – состоянию, при котором температура тела поднимается до 38...39 °С.
При гипертермии и, как следствие, тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение, пульс и дыхание учащены. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания. В горячих цехах промышленных предприятий большинство технологических процессов протекает при температурах, значительно превышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, которые могут привести к отрицательным последствиям. Инфракрасные лучи оказывают на организм человека в основном тепловое действие. При этом наступает нарушение деятельности сердечно-сосудистой и нервной систем. Лучи могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.
Тепловой удар возникает в особо неблагоприятных условиях работы: выполнение тяжелой физической работы в условиях высокой температуры, инфракрасного излучения и высокой влажности, в одежде, затрудняющей теплоотдачу; работы на открытом воздухе в жарком климате. Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма – гипотермии. В начальный период воздействий умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращаете; в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.
Действие теплового излучения на организм имеет ряд особенностей, одной из которых является способность инфракрасных лучей различной длины волны проникать на различную глубину и поглощаться соответствующими тканями, оказывая тепловое действие.
Короткие инфракрасные лучи (до 1,5 мкм) проникают в ткани на глубину нескольких сантиметров, поглощаются кровью и водой в слоях кожи и подкожной клетчатки, а также способны проникать через кости черепной коробки и воздействовать на мозговые оболочки, мозговую ткань. Длинные инфракрасные лучи (более 1,5 мкм) поглощаются верхним 2-миллиметровым слоем кожи. Особенно сильно поглощаются лучи с длиной волны 6-10 мкм, вызывая «калящий эффект». Воздействие инфракрасного излучения на организм проявляется как общими, так и местными реакциями. Местная реакция сильнее выражена при облучении длинноволновыми инфракрасными лучами. Коротковолновое инфракрасное излучение обладает более выраженным общим действием. Степень повышения температуры кожи в ответ на инфракрасное облучение находится в зависимости от его интенсивности. Тепловое облучение интенсивностью до 350 Вт/м2 не вызывает неприятного ощущения, при 1050 Вт/м2 уже через 3...5 мин на поверхности кожи появляется неприятное жжение (температура кожи повышается на 8...10°С), а при 3500 Вт/м2 через несколько секунд возможны ожоги.
Наряду с ростом температуры облучаемой поверхности тела наблюдается также рефлекторное изменение частоты пульса на фоне неизменной температуры тела. При облучении интенсивностью 700...1400 Вт/м2 частота пульса увеличивается на 5...7 ударов в минуту. Время пребывания в зоне теплового облучения лимитируется в первую очередь температурой кожи, болевое ощущение появляется при температуре кожи 40...45 °С (в зависимости от участка).
Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насыщенность крови, понижается венозное давление, замедляется кровоток и как следствие наступает нарушение деятельности сердечно-сосудистой и нервной систем. Изменения в организме под воздействием инфракрасного излучения зависят от его интенсивности, спектрального состава, площади и зоны облучения. Так, наибольший эффект наблюдается при облучении области шеи, верхней половины туловища.
При действии инфракрасной радиации могут развиваться патологические состояния у отдельных лиц в связи с профессиональной деятельностью: повреждения кожи; повреждения глаз; солнечный удар. Изменения на коже характеризуются эритемой, при интенсивном облучении может быть ожог, при длительном воздействии на коже может развиваться коричнево-красная пигментация. К патологическим изменениям глаз относятся коньюктивиты, помутнение роговицы и др. Длительное воздействие (10-20 лет) коротковолновой инфракрасной радиации большой интенсивности на глаза может вызвать поражение хрусталика - катаракту (у сталеваров, прокатчиков, кузнецов, кочегаров, стеклодувов).
Солнечный удар может возникнуть при работах на открытом воздухе (строители, геологи, сельскохозяйственные рабочие и др.) в результате интенсивного прямого облучения головы инфракрасным излучением коротковолнового диапазона (1-1,4 мкм), следствием чего является тяжелое поражение оболочек и мозговой ткани вплоть до выраженного менингита и энцефалита. Клиническая картина солнечного удара характеризуется общей слабостью, головной болью, головокружением, шумом в ушах, беспокойством, расстройством зрения, тошнотой, рвотой. В тяжелых случаях - помрачнение сознания, резкое возбуждение, судороги, галлюцинации, бред, потеря сознания. Температура тела при этом в отличие от теплового удара нормальная или незначительно повышена.
Когда среднесуточная температура окружающего воздуха +10 °С – теплый период; равна или ниже +10 °С – холодный период. Оптимальные показатели микроклимата распространяются на всю рабочую зону, допустимые показатели устанавливаются дифференцированно для постоянных и непостоянных рабочих мест. Оптимальные и допустимые показатели температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений должны соответствовать СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» (табл.5.1).
В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и других помещениях при выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением, должны соблюдаться оптимальные величины температуры воздуха (22... 24 °С), его относительной влажности (40...60 %) и скорости движения (не более 0,1 м/с).
Таблица 5.1
Дата добавления: 2020-06-09; просмотров: 715;