Итерационные методы расчета


Решение нелинейного уравнения (системы нелинейных уравнений), описывающего (описывающих) состояние электрической цепи, может быть реализовано приближенными численными методами. Решение находится следующим образом: на основе первой, достаточно грубой, оценки определяется начальное значение корня (корней), после чего производится уточнение по выбранному алгоритму до вхождения в область заданной погрешности.

Наиболее широкое применение в электротехнике для численного расчета нелинейных резистивных цепей получили метод простой итерации и метод Ньютона-Рафсона, основные сведения о которых приведены в табл. 1.

Таблица 1. Итерационные методы расчета

Последователь-ность расчета Геометрическая иллюстрация алгоритма Условие сходимости итерации Примечание
Метод простой итерации 1.Исходное нелинейное уравнение электрической цепи , где -искомая переменная, представляется в виде . 2. Производится расчет по алгоритму где - шаг итерации.   Здесь - заданная погрешность На интервале между приближенным и точным значениями корня должно выполняться неравенство 1.Начальное приближение обычно находится из уравнения при пренебрежении в нем нелинейными членами. 2. Метод распространим на систему нелинейных уравнений n-го порядка. Например, при решении системы 2-го порядка итерационные формулы имеют вид ; . 3. При решении системы уравнений сходимость обычно проверяется в процессе итерации.  
Метод Ньютона- -Рафсона 1. На основании исходного нелинейного уравнения электрической цепи , где -искомая переменная, записывается итерационная формула где - шаг итерации. 2.По полученной формуле проводится итерационный расчет Здесь - заданная погрешность На интервале между приближенным и точным значениями корня должны выполняться неравенства Примечания п. 1,2 и 3 к методу простой итерации распространимы на метод Ньютона-Рафсона. При этом при решении системы 2-го порядка итерационные формулы имеют вид где

 

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.: Энергия- 1972. –200с.
  4. Матханов П.Н.Основы анализа электрических цепей. Нелинейные цепи.: Учеб. для студ. электротехн. спец. вузов. 2-е изд., переработ. и доп. –М.: Высш. шк., 1986. –352с.
  5. Чуа Л.О., Лин Пен-Мин.Машинный анализ электронных схем: алгоритмы и вычислительные методы: Пер. с англ. –М.: Энергия, 1980. – 640 с.
  6. Сборник задач и упражнений по теоретически основам электротехники: Учеб. пособие для вузов /Под ред. проф. П.А.Ионкина. –М.: Энергоиздат, 1982. –768 с.

Контрольные вопросы и задачи

  1. Как рассчитываются цепи с одним нелинейным резистором и произвольным числом линейных?
  2. В чем преимущества и недостатки аналитических методов расчета по сравнению с графическими?
  3. Какие аналитические методы используются для расчета нелинейных резистивных цепей постоянного тока?
  4. В чем сущность метода линеаризации? Для решения каких двух типов задач он применяется?
  5. Что такое эквивалентные схемы для приращений? Как они составляются?
  6. Какова последовательность расчета нелинейных цепей итерационными методами?
  7. В диагонали моста находится нелинейный резистор, ВАХ которого аппроксимирована выражением , где . Линейные сопротивления противоположных плеч моста попарно равны: ; . Определить мощность, рассеиваемую нелинейным резистором, если схема питается от источника с ЭДС .

Ответ: Р=2 Вт.

  1. Определить ток в цепи, состоящей из последовательно соединенных линейного и нелинейного резисторов, если кривая ВАХ последнего проходит через точки с координатами (15 В; 1,425 А) и (5 В; 0,325 А) и аппроксимирована выражением вида . ЭДС на входе цепи .

Ответ: .

  1. В схеме предыдущей задачи ВАХ нелинейного резистора описывается выражением (ток – в амперах, напряжение – в вольтах) ; ; . Определить напряжение на нелинейном резисторе и ток в нем методом Ньютона-Рафсона.

Ответ: ; .

  1. В цепи на рис. 1,б , . ВАХ нелинейного резистора аппроксимирована двумя прямолинейными отрезками, первый из которых проходит через точки с координатами (0 В; 0 А) и (9 В; 2 А), а второй – через точки с координатами (9 В; 2 А) и (12 В; 6 А). Определить ток в цепи.

Ответ: .


Лекция N 32

Нелинейные магнитные цепи при постоянных потоках.
Основные понятия и законы магнитных цепей

При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:

  • ферромагнитные(относительная магнитная проницаемость );
  • неферромагнитные(относительная магнитная проницаемость ).

Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками.Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью.

Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.

 

Таблица 1. Векторные величины, характеризующие магнитное поле

Наименование Обозначение Единицы измерения Определение
Вектор магнитной индукции Тл (тесла) Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера
Вектор намагниченности А/м Магнитный момент единицы объема вещества
Вектор напряженности магнитного поля А/м , где Гн/м- магнитная постоянная

 

Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.

Таблица 2. Основные скалярные величины, характеризующие магнитную цепь

Наименование Обозначение Единица измерения Определение
Магнитный поток Вб (вебер) Поток вектора магнитной индукции через поперечное сечение магнитопровода
Магнитодвижущая (намагничивающая) сила МДС (НС) A где -ток в обмотке, -число витков обмотки
Магнитное напряжение А Линейный интеграл от напряженности магнитного поля , где и -граничные точки участка магнитной цепи, для которого определяется

 



Дата добавления: 2016-07-05; просмотров: 3113;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.