Основы расчета рабочего технологического оборудования щебнеочистительных машин и комплексов
Основное рабочее оборудование современной машины для глубокой очистки щебня включает выгребное устройство со скребковой цепью, роторы для забора щебня у торцов шпал, вибрационные грохоты и систему конвейеров. Кроме того имеется дополнительное рабочее оборудование: планировщики, уплотнители, устройства для укладки геотекстиля и др. Расчет ротора аналогичен расчету ротора машин для ремонта земляного полотна (см. п. 4.5), а расчет конвейеров является задачей курса подъемно-транспортных машин. Рассмотрим основы расчета выгребного устройства и вибрационного грохота.
7.8.1. Расчет выгребного устройства
Расчеты цепного скребкового выгребного устройства (см. рис. 7.5) могут преследовать различные цели: определить скорость движения выгребной цепи, согласованную со скоростью движения машины при заданных размерах цепи и подпутной балки; определить усилия, действующие на различных участках цепи с целью оценки прочности и надежности и размеров ее конструктивных элементов; найти мощность привода цепи в различных режимах работы; определить параметры гидроцилиндров перемещения желобов и др.
В качестве примера определим мощность, которую должен развивать приводной двигатель цепи. После анализа характера движения цепи и материала на различных участках, мощность двигателя, кВт:
(7.7)
Где Kнс – коэффициент неучтенных сопротивлений, к которым относятся дополнительные сопротивления в шарнирах цепи, сопротивления, связанные со скольжением элементов цепи при поворотах звеньев в направляющих снизу желобов, сопротивления, возникающие при взаимодействии приводной звездочки и цепи; динамические факторы разгона балласта и т.д., Kнс = 1,2 – 1,5; Vц – линейная скорость движения выгребной цепи, м/с; h – КПД передаточного механизма выгребной цепи; T1 – сопротивление, связанное с резанием балласта зубьями и кромками скребков в забое, кН; T2 – сопротивление, связанное с волочением материала скребками в забое (трение балласта о балласт), кН; T3 – сопротивление, связанное с волочением материала по рабочему желобу (трение балласт о сталь), кН; T4 – сопротивление, связанное с трением рабочей и холостой ветвей о желоб, кН; T5 – сопротивление, связанное с подъемом балластного материала по рабочему желобу, кВт.
Суммарная сила резания слежавшегося щебня в забое, кН:
(7.8)
где Kр – удельное сопротивление резанию щебня в забое (Kр = (50 – 90) кН/м2); n1 – число скребков, находящихся одновременно в забое; Fc – поперечная площадь срезаемой одним скребком стружки, м2.
Количество скребков в забое (рис. 7.26) (L1 – длина активной части цепи на подпутной балке, м; tц – шаг расположения скребков на цепи, м). Площадь срезаемой стружки определяется кинематикой движения скребка и углом наклона g, рад, подпутной балки к направлению, перпендикулярному поступательному движению машины. Для магистральных машин g = 0, а у универсальных машин вследствие наращивания подпутной балки на при работе на стрелочном переводе и поворота холостого желоба появляется этот угол. После анализа кинематики движения скребка, с учетом того, что абсолютная скорость движения скребка (скорость резания) Vр, м/с, является результатом геометрического сложения вектора скорости движения цепи Vц, м/с, и вектора скорости поступательного движения машины Vм, м/с, а также зависит от угла g, площадь срезаемой одним скребком стружки:
(7.9)
где aс – высота скребка, м, hр – толщина срезаемой стружки, м.
При выборе соотношения поступательной скорости движения машины Vм и скорости движения цепи Vц необходимо дополнительно анализировать заполнение пространства между скребками разрыхленным балластом (заполнение ячеек). При полном заполнении процесс резания прекратится, и прежде всего, в зоне, примыкающей к выходу скребком из забоя на рабочий желоб. Заполнение ячеек характеризуется коэффициентом заполнения:
(7.10)
где Qщ, Qя – объемы: рыхлого щебня в ячейке и полезный объем с учетом заполнения части пространства скребком, м3; bс – длина рабочей части скребка с учетом зубьев, м; Kр – коэффициент, учитывающий разрыхление щебня, Kр = 1,2 – 1,3; Kс – коэффициент, учитывающий заполнение пространства ячейки объемом скребка; Kс = 0,7 – 0,8.
Сопротивление движению цепи, связанное с волочением балласта скребками в забое, кН:
(7.11)
где r – плотность рыхлого балласта, кг/м3; g – ускорение свободного падения, м/с2; fб-б – коэффициент трения щебня по щебню, fб-б = 0,6 – 0,8.
Сопротивление движению цепи, связанное с волочением щебня по рабочему желобу, кН:
(7.12)
где n2 – число объемов балласта на длине рабочего желоба, fб-с – коэффициент трения балласта по стали, fб-с = 0,4 – 0,6; a – угол наклона желоба к горизонту, рад.
Сопротивление движению цепи, связанное с трением скребков по рабочему и холостому желобу, кН:
(7.13)
где L3 – длина холостого желоба, м; qц – погонный вес цепи со скребками, кН/м.
Сопротивление движению цепи, связанное с подъемом балластного материала по рабочему желобу (преодоление скатывающей силы на наклонной плоскости желоба), кН:
(7.14)
По определенному значению мощности с учетом передаточного числа редуктора и геометрических размеров приводной звездочки определяются параметры приводного двигателя выгребной цепи.
7.8.2. Расчет плоского вибрационного грохота
Цели расчетов плоского вибрационного грохота: определить его производительность, как элемента технологической цепи щебнеочистительной машины; рассчитать параметры динамического дебалансного привода вибраций короба и сит грохота; определить мощность приводного двигателя; произвести оценку прочности и надежности элементов конструкции и т.д. Рассмотрим выбор параметров вибрационного грохота, обеспечивающих при заданной производительности требуемое качество очистки по методике [76]. На эффективность просеивания щебня и засорителей значительное влияние оказывают размеры просеивающих сит, амплитуда и частота вибраций, угол наклона сит грохота, направление вращения дебалансного вала возбуждения круговых колебаний и траектория движения сит. Отношение ширины и длины просеивающих поверхностей обычно принимается 1 : 2,5.
На производительность грохота существенное влияние оказывает соотношение амплитуды, частоты и формы колебаний просеивающих поверхностей. При оптимальном их соотношении происходит самоочищение отверстий сит. Чтобы происходило самоочищение отверстий, частицы должны подбрасываться на высоту h > 0,4l (l – размер отверстия сита, м. Для наклонного грохота начальная скорость частицы при подбрасывании должна быть , м/с (a – угол наклона сит грохота, обычно приводимый в угловых градусах; для грохотов ЩОМ a = 20°). Начальная скорость подбрасывания частиц равна амплитудному значению скорости вибрирования сит. Эта скорость определяет основные параметры вибрирования: vв = Aвwв (Ав, wв – амплитуда, м, и частота вибрирования, рад/с). Амплитудное значение ускорения , м/с2. По условиям прочности конструкции грохота оно не должно превышать значений 80 м/с2. Для наклонных вибрационных грохотов рекомендуется формула, связывающая высоту подбрасывания, амплитуду колебаний и размер отверстий сита .
При изменении направления вращения дебалансного вала на противоположное прямому направлению вращения, качество просеивания материала улучшается, но уменьшается производительность грохота. Скорость движения материала снижается.
Для расчета производительности грохота, м3/ч обычно используется формула проф. В.А. Баумана [5]:
(7.15)
где q – удельная производительность грохота для заданного размера сита, м3/ч / м2; F – площадь просеивания, м2; k1 – коэффициент, учитывающий процентное содержание засорителей в вырезаемом щебне; k2 – коэффициент, учитывающий содержание в засорителях частиц, размер которых меньше 0,5 размера отверстия нижнего сита; k3 – коэффициент, учитывающий угол наклона сита; m – коэффициент, учитывающий возможную неравномерность питания, форму частиц и тип грохота. Для щебня и наклонного грохота m = 0,5. Значения других параметров приведены в табл. 7.3.
Таблица 7.3
Размер отверстий сита в свету, мм | |||||
q при угле наклона 18° | |||||
Угол наклона сита к горизонту, град | |||||
k1 | 1,0 | 1,18 | 1,28 | 1,37 | 1,54 |
Содержание засорителей в исходном щебне, % | |||||
k2 | 0.58 | 0.66 | 0.76 | 0.84 | 0.92 |
Содержание в засорителях частиц, меньших 0,5 размера отверстий нижнего сита, % | |||||
k3 | 0,63 | 0,72 | 0,82 | 0,91 | 1,0 |
Ожидаемое значение эффективности просеивания после определения размеров отверстий сита и производительности;
(7.16)
где e – эталонное значение эффективности просеивания для средних условий (e =85 % для наклонного грохота с круговой вибрацией при просеивании щебня); – коэффициент, учитывающий угол наклона грохота ( = 1,0 при угле наклона 18° и = 0,96 при угле 21°); – коэффициент, учитывающий процентное содержание засорителей в очищаемом щебне ( = 0,86; 0,9; 0,95, при содержании засорителей в щебне, соответственно, 20; 30 и 40 %); – коэффициент, учитывающий процентное содержание в засорителе частиц, меньших 0,5 размера ячейки нижнего сита ( = 0,9; 0,96; 0,98, при содержании указанных частиц в засорителе, соответственно, 20; 30 и 40 %)
Для двух- или трехъярусных грохотов, применяемых на рассматриваемых щебнеочистительных машинах, производительность определяют по нижнему ситу, как лимитирующему. Для него исходным продуктом будет материал, поступающий с лежащего выше сита. Для других сит производится проверочный расчет.
В результате анализа колебательной схемы, например описанной в [5], определяются динамические нагрузки на грохот, которые зависят от массы короба с ситами и от приведенной массы находящегося на грохоте щебня. Приведенная масса щебня, кг:
(7.17)
где r – объемная плотность материала, находящегося на грохоте, кг/м3; Q – производительность грохота по подаче щебня, м3/ч; Lг – длина грохота, м; T – содержание засорителей в исходном щебне в долях единицы; vщ – скорость движения щебня по ситу, м/с.
Для наклонных грохотов с круговой вынуждающей силой скорость движения щебня, м/с:
(7.18)
где kq – коэффициент, учитывающий производительность q одного метра ширины грохота (kq = 0,7 – 0,9 для высокопроизводительных грохотов щебнеочистительных машин); ka – коэффициент, учитывающий угол наклона грохота a, град (ka = 3,9; 5,08; 6,5; 8,1 и 10,0 для углов наклона грохота, соответственно a = 16; 18; 20; 22 м 24°); Ad – средняя круговая амплитуда колебаний грохота, м; wв – угловая частота вынуждающих колебаний, рад/с.
Для того чтобы получить одинаковые амплитуды и траектории колебаний всех точек грохота, эффективную виброизоляцию, устойчивый режим работы рекомендуется делать компоновку грохота по так называемой центрированной схеме. Для этого дебалансный вал необходимо поместить в центр масс грохота и по середине между опорами, обеспечить равенство параметров упругости опор в вертикальном и горизонтальном направлении, линия, соединяющая центры упругости амортизаторов должна проходить через центр дебалансного вала.
При работе короб такого грохота совершает плоско-параллельные колебания в вертикальной продольной плоскости, по траектории близкой к окружности. Чтобы обеспечить устойчивый режим вибрирования, частота вынуждающей силы wв должна более, чем в 4 раза превосходить частоту собственных колебаний грохота в горизонтальном и вертикальном направлениях В зарезонансном режиме короб грохота вибрирует по приблизительно круговой траектории в направлении вращения дебалансного вала с отставанием по фаза на угол p. Для уменьшения вибрационного воздействия на привод дебалансного вала приводной элемент устанавливается по центру окружности – траектории условного вращения короба и дебалансов. При разгоне или остановке вращения дебалансного вала колебательная система проходит зону резонансного режима работы. Особенно долго происходит остановка вращения дебалансов. Для уменьшения резонансной амплитуды колебаний неподвижное и подвижное основания амортизаторов соединены между собой резиновыми пластинами, которые в нормальном режиме не натянуты, а растягиваются только при увеличении амплитуды, поглощая энергию колебаний. Другой способ решения этой проблемы – установка тормоза в приводе дебалансного вала.
Дата добавления: 2016-06-29; просмотров: 3252;