ЛИКВИДАЦИЯ АВАРИЙ В ЭНЕРГОСИСТЕМАХ
Аварии в энергосистемах наносят огромный народнохозяйственный ущерб, поэтому ликвидация их должна осуществляться быстро и точно. Для этого применяют быстродействующие релейные защиты от токов КЗ и средства противоаварийной системной автоматики: повторного включения линий, трансформаторов и шин, включения резервного оборудования и источников питания, регулирования возбуждения генераторов и синхронных компенсаторов; регулирования напряжения (АРН), частотной разгрузки, частотного повторного включения (ЧАПВ) и др. Массовое внедрение в энергосистемах перечисленных автоматических устройств отражается на работе диспетчера энергосистемы, от которого требуется четкое знание принципов и особенностей работы автоматических устройств при нарушениях режима; быстрая переработка всей поступающей во время аварии информации и столь же быстрое принятие решений, направленных на устранение аварийного режима. При нормальном функционировании автоматических устройств действия диспетчера сводятся к контролю за их срабатыванием и за установившимся послеаварийным режимом с последующим принятием необходимых мер. В случае неисправности того или иного автоматического устройства персонал вынужден дублировать его действие вручную.
Большое значение при ликвидации аварий приобретает безотказность в работе средств связи и телемеханики. Последнее имеет особое значение при отсутствии на управляемых энергообъектах дежурного персонала.
Типичными явлениями, с которыми обычно бывают связаны аварии в энергосистемах, являются понижения частоты и напряжения. В результате обоих этих явлений возможно возникновение асинхронного режима, качаний и разделение систем на части.
Понижение частоты возникает при нарушении баланса между генерацией и потреблением активной мощности. При дефиците мощности, вызванном отключением крупных генераторов или станций и отсутствием в системе резерва, частота снижается в зависимости.от состава генерирующей мощности и нагрузки ориентировочно на 1 % при изменении нагрузки на 1—3 %.
Понижение частоты снижает производительность машин у потребителей и механизмов с. н. на станциях, что в свою очередь вызывает дальнейшее снижение вырабатываемой генераторами мощности.
Для предупреждения системных аварий, связанных с внезапным понижением частоты, применяются устройства автоматического включения и загрузки резервных гидрогенераторов, перевода в активный режим гидрогенераторов, работающих в режиме синхронных компенсаторов. Набор нагрузки резервными генераторами сокращает дефицит мощности в системе, но не во всех случаях устраняет начавшийся процесс снижения частоты. В помощь автоматическим устройствам загрузки генераторов в энергосистемах установлены устройства для автоматической разгрузки (т. е. отключения части потребителей) при снижении частоты. Разгрузка производится несколькими очередями в диапазоне частот срабатывания 48—46,5 Гц с интервалами по частоте 0,1— 0,2 Гц. Автоматическая частотная разгрузка должна обеспечить уровень частоты в системе не ниже 49 Гц. Дальнейшее повышение частоты до номинальной осуществляется диспетчером вводом резервной мощности, а при отсутствии — ограничением и отключением наименее ответственных потребителей.
Важнейшим мероприятием при понижении частоты в пределах 48—45 Гц является выделение на независимое от энергосистемы питание с. н. электростанций, чтобы устранить угрозу нарушения нормальной работы их оборудования. Для этого предусматриваются специальные схемы, в которых часть генераторов станций при заданной частоте отделяется от системы (автоматически или вручную дежурным персоналом станции) со сбалансированной нагрузкой с. н. и части потребителей, не допускающих резкого изменения частоты.
Понижение напряжения может сопутствовать понижению частоты, но может произойти и независимо от нее. При одновременном пониже* нии частоты и напряжения последнее снижается примерно на 1 % при понижении частоты на 1 Гц.
Напряжение может понижаться в той или иной части энергосистемы при недостатке в ней реактивной мощности. В этом случае оперативный персонал станций и подстанций с синхронными компенсаторами самостоятельно, не дожидаясь распоряжения диспетчера, повышает реактивную нагрузку генераторов и синхронных компенсаторов, пользуясь таблицами допустимых перегрузок.
При глубоком снижении напряжения независимо от причины, по которой оно произошло, срабатывают устройства автоматического регулирования возбуждения и быстродействующей форсировки возбуждения (БВ) генераторов и синхронных компенсаторов, временно поднимая реактивную мощность. Однако допустимое время форсированной работы незначительно (для крупных турбогенераторов с непосредственным охлаждением обмоток 20 с). Поэтому в условиях, когда срабатывает форсировка возбуждения генераторов, диспетчер обязан действовать особенно быстро, так как промедление с восстановлением напряжения может привести к отключению перегруженных генераторов от сети и дальнейшему ухудшению положения в системе.
Асинхронный режим в энергосистеме может возникнуть в результате междуфазиого КЗ, потери возбуждения (полной или частичной) мощным генератором и т. д. При этом вышедшие из синхронизма генераторы или части энергосистемы продолжают оставаться соединенными между собой, но работают с разными частотами и между ними происходит периодический обмен потоками мощности. Признаками асинхронного режима являются качания стрелок вольтметров, амперметров в цепях генераторов, линий и трансформаторов вслед за изменением направления потока мощности. Число периодов качаний в секунду равно разности частот в выпавших из синхронизма частях. В точках, близких к так называемому электрическому центру качания, наблюдаются наибольшие колебания напряжения. Асинхронные режимы могут устраняться самопроизвольно в течение нескольких секунд. Если же ресинхронизация затягивается, то для восстановления синхронизма понижают частоту в части системы, где она повысилась, и повышают там, где частота понизилась. При разности частот от 1 до 0,5 Гц вышедшие из синхронизма части (станции) обычно втягиваются в синхронизм.
Ресинхронизация обеспечивается действием АЧР в части системы с пониженной частотой и автоматической разгрузкой генераторов в части системы с повышенной частотой. Кроме того, для ликвидации асия-хронного режима на транзитных линиях устанавливаются делительные защиты, разделяющие части энергосистемы, вышедшие из синхронизма.
Если в течение 2—3 мин синхронизм в системе восстановить не удается, диспетчер разделяет энергосистему на несинхронно работающие части. После установления нормального режима в разделенных частях их синхронизируют и включают на параллельную работу. Разница частот при замыкании несинхронно работающих частей допускается не более 0,5 Гц.
При ликвидации аварийных режимов диспетчер энергосистемы пользуется прямой телефонной связью со всеми управляемыми энергообъектами, а также радиосвязью. Оперативные переговоры записываются на магнитную лешу. В создавшейся аварийной ситуации диспетчер ориентируется по мнемонической схеме системы, изображенной на диспетчерском щите. Щиты оснащены средствами телесигнализации положения отключающих аппаратов, а в некоторых случаях и средствами телеуправления. Имеются устройства телеизмерения наиболее важных электрических величин: частоты, активной мощности станций, напряжения в контрольных точках системы, нагрузки по линиям и др.
В настоящее время различные устройства телеинформации сопря-
гаются с устройствами отображения ее на электронно-лучевых трубках. Обработка и воспроизведение получаемой диспетчером информации производятся с помощью ЭВМ.
СПИСОК ЛИТЕРАТУРЫ
1. Азбукин Ю. И., Аврух В. Ю. Модернизация трубогенераторов.— М : Энергия, 1980.—231 с.
2. Грудинский П. Г., Мандрыкин С. А., Улицкий М. С.Техническая эксплуатация основного электрооборудования станций иподстанций/ Под ред. П. И. Устинова. — М.: Энергия, 1974.—576 с.
3. Голунов А. М., Мазур А. Л.Вспомогательное оборудование трансформаторов. — М.: Энергия, 1978.—143 с.
4. Инструкцияпо эксплуатации и ремонту генераторов на электростанциях.— М.: Энергия, 1974.—81с.
5. Инструкцияпо эксплуатации трансформаторов. — СПО ОРГРЭС, 1976.—107 с.
6. Мусаэлян Э. С.Наладка и испытание электрооборудования электростанций и подстанций. — 2-е изд. — М.: Энергия, 1979.—464 с.
7. Нормыиспытания электрооборудования/Под ред. С. Г. Королева.— 5-е изд. — М.: Атомиздат, 1978.—304 с.
8. Полтев А. И.Конструкции ирасчет, элегазовых аппаратов высокого напряжения. — Л.: Энергия, Ленинградское отделение, 1979.—240 с.
9. Пособиедля изучения «Правил технической эксплуатации электрических станций и сетей»/Под ред. К. М. Антипова.—М.: Энергия, 1979.—400 с.
10. Правилатехнической эксплуатации электрических станций и сетей. — 13-е изд. — М.: Энергия, 1977. — 288 с.
11. Рожкова Л. Д., Козулин В. С. Электрооборудование станций иподстанций. — 2-е изд. — М.: Энергия, 1980.—600 с.
12. Справочникпо ремонту турбогенераторов/Под ред. П. И. Устинова. — М: Энергия, 1979.—480 с.
13. Филатов А. А. Оперативное обслуживание электрических подстанций. — М.: Энергия, 1980.—232 с.
14. Филатов А. А.Фазировка электрического оборудования. — М.: Энергия, 1977.—64 с.
15. Эксплуатация турбогенераторов с непосредственным охлаждением/Под общей ред. Л. С. Линдорфа и Л. Г. Мамиконянца. — М.: Энергия, 1972.—351 с.
Дата добавления: 2016-06-29; просмотров: 3124;