Волоконно-оптические кабели


В волоконно-оптических системах передачи (ВОСП) информация передается электромагнитными волнами высокой частоты, около 200 ТГц, что соответствует ближнему инфракрасному диапазону оптического спектра 1500 нм.

Волноводом, переносящим информационные сигналы в ВОСП, является оптическое волокно (ОВ), которое обладает способностью передавать световое излучение на большие расстояния с малыми потерями.

Потери в ОВ количественно характеризуются затуханием. Скорость и дальность передачи информации определяются искажением оптических сигналов из-за дисперсии и затухания.

Оптическое волокно в настоящее время считается самой лучшей и перспективной физической средой для передачи информации, на значительные расстояния по следующим причинам:

· высокая (до 1Тбит/с) скорость передачи. Широкополосность оптических сигналов, обусловленная высокой частотой несущей волны позволяет передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов.

Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга.

Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи.

На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут;

· очень малое (по сравнению с другими средами) затухание светового сигнала в оптическом волокне – 0,22 дБ/км на длине волны 1,55 мкм. Это позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1,55 мкм имеет затухание 0,154 дБ/км. В оптических лабораториях США разрабатываются еще более «прозрачные», так называемые фторцирконатные оптические волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2,5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с;

· ОВ изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди;

· оптические волокна имеют диаметр около 100 мкм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике;

· оптические волокна являются диэлектриками, следовательно, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. В оптической системе они электрически полностью изолированы друг от друга, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют свою актуальность;

· применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод. Это экономит значительные средства при прокладки кабеля через реки и другие преграды;

· системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на ОВ могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии;

· важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Но существуют также некоторые недостатки волоконно-оптических технологий:

· при создании линии связи требуются высоконадежные преобразователи электрических сигналов в свет, и свет в электрические сигналы. Для соединения ОВ с приемо-передающим оборудованием используются оптические коннекторы (соединители), которые должны обладать малыми оптическими потерями и большим ресурсом на подключение-отключение. Погрешности при изготовлении таких элементов линии связи должны быть порядка доли микрона, т.е. соответствовать длине волны излучения. Поэтому производство этих компонентов оптических линий связи очень дорогостоящее;

· другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря, на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи.

По условиям эксплуатации кабели подразделяют на:

· монтажные;

· станционные;

· зоновые;

· магистральные.

Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.

Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.

Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.

Волоконно-оптические кабели состоят из центрального проводника света (сердцевины) – стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В зависимости от распределения показателя преломления и от величины диаметра сердечника различают:

• многомодовое волокно со ступенчатым изменением показателя преломление (рисунок 2.4,а);

• многомодовое волокно с плавным изменением показателя преломления (рисунок 2.4,6);

• одномодовое волокно (рисунок 2.4, в).

Понятие «мода» описывает режим распространения световых лучей во внутреннем сердечнике кабеля.

В одномодовом кабеле (Single Mode Fiber, SMF) используется центральный проводник очень малого диаметра, соизмеримого с длиной волны света — от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Полоса пропускания одномодового кабеля очень широкая – до сотен гигагерц на километр.

Изготовление тонких качественных волокон для одномодового кабеля сложный технологический процесс, что делает кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потеряв при этом значительную часть его энергии.

 

 

В многомодовых кабелях (Multi Mode Fiber, MMF) используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм или 50 мкм − это диаметр центрального проводника, а 125 мкм – диаметр внешнего проводника.

В таких кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения луча называется модой луча. В многомодовых кабелях с плавным изменением коэффициента преломления режим распространения каждой моды имеет более сложный характер.

В качестве источников излучения света в волоконно-оптических кабелях применяются:

• Светодиоды с длиной волны 850 нм и 1300 нм. Излучатели с длиной волны 850 нм существенно дешевле, чем излучатели с длиной волны 1300 нм, но полоса пропускания кабеля для волн 850нм существенно уже, например 200 МГц/км вместо 500 МГц/км.

• Полупроводниковые лазеры. Лазерные излучатели работают на длинах волн 1300 и 1550 нм. Быстродействие современных лазеров позволяет модулировать световой поток с частотами 10 ГГц и выше.

Волоконно-оптические кабели присоединяют к оборудованию разъемами MIC, ST и SC.

 



Дата добавления: 2020-04-12; просмотров: 496;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.