Квадраты и псевдоквадраты.


Пусть n – модуль RSA, то есть n=pq, p, q – различные большие простые числа.

Возьмем произвольное число a: (a,n)=1. Возможны следующие случаи:

1) . Тогда число a является квадратичным вычетом, или квадратом, по модулю n.

2) , , или , . Тогда , и a не является квадратом по модулю n. То есть, не зная разложения модуля RSA на простые сомножители и получив отрицательное значение символа Якоби, можем с определенностью сказать, что a – не квадрат по модулю n.

3) , тогда a не является квадратом по модулю n, но символ Якоби, как и для квадрата по модулю n, равен единице: . То есть, не зная разложения модуля n на простые сомножители и получив положительное значение символа Якоби, не можем наверняка определить, является ли a квадратом по модулю n. Числа a: называются псевдоквадратами по модулю n=pq. Множество псевдоквадратов по модулю n обозначается .

Утверждение (о мощности множеств квадратов и псевдоквадратов по модулю RSA).

n=pq, p, q – различные простые числа |Q(n)|=| |=φ(n)/4.

Доказательство:

Согласно доказанной в п.1. теореме о числе кавдратичных вычетов, |Q(p)|=| |=(p—1)/2, |Q(q)|=| |=(q—1)/2. В силу взаимной простоты чисел p и q, среди чисел 0,1, 2, … , n—1 окажется ровно |Q(p)|·|Q(q)|=φ(n)/4 квадратов и | |·| |=φ(n)/4 псевдоквадратов.

Задача различения квадратов и псевдоквадратов не сложнее задачи факторизации, так как, зная разложение n на простые сомножители, сможем вычислить и с помощью полиномиального алгоритма.

На момент написания этого пособия не имелось никакой информации о том, проще ли задача различения квадратов и псевдоквадратов, чем задача факторизации.

 

Числа Блюма.

Числа вида n=pq, p, q – различные простые числа, причем p≡3(mod 4), q≡3(mod 4), называются числами Блюма.

Пусть n – число Блюма, и a Q(n). Тогда сравнение x2a(mod n) имеет четыре решения, которые можно представить в виде системы: . Заметим, что . Аналогично получим . То есть один корень из пары b,—b является, а другой не является квадратом по модулю p, один корень из пары c, —c является, а другой не является квадратом по модулю q.

Таким образом, если n – число Блюма, то один из четырех корней сравнения x2a(mod n) является квадратом и один – псевдоквадратом по модулю n. Корень, являющийся квадратом по модулю n, называется главным корнем.

Итак, мы только что показали важное свойство квадратичных сравнений по модулю чисел Блюма: извлекая квадратный корень по модулю Блюма, получаем 4 решения, из одного из которых в свою очередь можно извлечь квадратный корень, и т. д. На этом важном свойстве построено несколько криптосистем.

BBS-генератор (генератор Blum-Blum-Shub):

Параметры генератора: n=pq, p, q – различные простые числа, причем p≡3(mod 4), q≡3(mod 4) (то есть n – число Блюма).

Начальное состояние (ключ генератора): s0 Q(n)

Генерируемая последовательность: BBS(s0)=z1, z2, …, zm, где zi=si mod 2, i=1,2,…,m, si+1=si2 mod n, i ≥ 0.



Дата добавления: 2018-11-26; просмотров: 749;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.