ВИДЫ ИНСТРУМЕНТАЛЬНЫХ МАТЕРИАЛОВ И ОБЛАСТИ ИХ ПРИМЕНЕНИЯ


Углеродистые и легированные инструментальные стали. Номенклатура инструментальных материалов раз­нообразна. Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные стали марок У7, У7А...У13, У13А. Помимо железа и углерода, эти стали содержат 0,2...0,4 % марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200...250 °С) их твердость резко уменьшается.

Легированные инструментальные стали по своему химическому составу отличаются от углеродистых повы­шенным содержанием кремния или марганца, или нали­чием одного или нескольких легирующих элементов: хрома (увеличивает твердость, прочность, коррозионную стойкость материала, понижает его пластичность); нике­ля (повышает прочность, пластичность, ударную вязкость, прокаливаемость материала); вольфрама (повышает твердость и теплостойкость материала); ванадия (повышает твердость и прочность материала, способствует образо­ванию мелкозернистой структуры); кобальта (увеличи­вает ударную вязкость и жаропрочность материала); молибдена (повышает упругость, прочность, теплостой­кость материала). Для режущих инструментов исполь­зуются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами—лучшей закаливаемостью и прокаливаемостью, меньшей склон­ностью к короблению, но теплостойкость их практически равна теплостойкости углеродистых сталей 350...400 °С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназна­ченных для обработки на станках с низкими скоростями резания (мелкие сверла, развертки).

Быстрорежущие инструментальные стали. Из группы высоколегированных сталей для изготовления режущих инструментов используются быстрорежущие стали с высо­ким содержанием вольфрама, молибдена, кобальта, вана­дия. Современные быстрорежущие стали можно разде­лить на три группы.

К сталям нормальной теплостойкости относятся воль­фрамовые Р18, Р12, Р9 и вольфрамомолибденовые Р6М5, Р6МЗ, Р8МЗ (табл. 6.1). Эти стали имеют твердость в закаленном состоянии 63...66 НRСэ, предел прочности при изгибе 2900...3400 МПа, ударную вязкость 2,7... 4,8 Дж/м2 и теплостойкость 600...650 °С. Указанные марки сталей получили наиболее широкое распространение при изготовлении режущих инструментов. Они используются при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс. Иногда применяются быстрорежу­щие стали, дополнительно легированные азотом (Р6АМ5, Р18А и др.), которые являются модификациями обычных быстрорежущих сталей. Легирование азотом повышает режущие свойства инструмента на 20...30 %, твердость — на 1…2 единицы НRСэ.

Стали повышенной теплостойкости характеризуются повышенным содержанием углерода — 10Р8МЗ, 10Р6М5; ванадия — Р12ФЗ, Р2МЗФ8, Р9Ф5; кобальта — Р18Ф2К5, Р6М5К5, Р9К5, Р9К10, Р9М4К8Ф, 10Р6М5Ф2К8 и др.

Твердость сталей в закаленном состоянии достигает 66...70 НRСэ, они имеют более высокую теплостойкость (до 620...670 °С). Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышен­ной прочности и закаленных. Период стойкости инстру­ментов из таких сталей в 3…5 раз выше, чем из сталей Р18, Р6М5.

Табл. 3. Содержание легирующих элементов в быстрорежущих сталях, %

Стали высокой теплостойкости характеризуются пони­женным содержанием углерода, но весьма большим коли­чеством легирующих элементов — Bl1M7K23, В14М7К25, ЗВ20К20Х4Ф. Они имеют твердость 69...70 HRCЭ, и тепло­стойкость 700....720 °С. Наиболее рациональная область их использования — резание труднообрабатываемых ма­териалов и титановых сплавов. В последнем случае период стойкости инструментов в 30…80 раз выше, чем из стали Р18, и в 8…15 раз выше, чем из твердого сплава ВК8. При резании конструкционных сталей и чугунов период стойкости возрастает менее значительно (в 3…8 раз).

В связи с острым дефицитом вольфрама в СССР и за рубежом разрабатываются безвольфрамовые инструмен­тальные материалы,в том числе быстрорежущие стали.

К таким сталям относятся маловольфрамовые Р2М5, РЗМЗФ4К5. Р2МЗФ8, А11РЗМЗФ2 и безвольфрамовая 11М5Ф (см. табл. 6.1). Эксплуатационные свойства указанных сталей близки к свойствам традиционных быстрорежущих сталей соответствующих групп.

Перспективным направлением в повышении качества быстрорежущих сталей является получение их методами порошковой металлургии. Стали Р6М5К5-П (П — по­рошковая), Р9М4К8-П, Р12МЗФЗК10-П и другие имеют очень однородную мелкозернистую структуру, хорошо шлифуются, меньше деформируются при термообработке, отличаются стабильностью эксплуатационных свойств. Период стойкости режущих инструментов из таких ста­лей возрастает до 1,5 раза. Наряду с порошковыми бы­строрежущими сталями хорошо зарекомендовали себя так называемые карбидостали, содержащие до 20 % TiC, которые по служебным характеристикам занимают про­межуточное место между быстрорежущими сталями и твердыми сплавами.

Твердые сплавы. Эти сплавы получают методами порошковой металлургии в виде пластин или коронок. Основными компонентами таких сплавов являются кар­биды вольфрама WC, титана TiC, тантала ТаС и ниобия NbС, мельчайшие частицы которых соединены посред­ством сравнительно мягких и менее тугоплавких кобальта или никеля в смеси с молибденом (табл. 6.2, 6.3).

Твердые сплавы имеют высокую твердость —88... 92 HRA (72...76 HRCЭ,) и теплостойкость до 850... 1000 °С. Это позволяет работать со скоростями резания в 3…4 раза большими, чем инструментами из быстро­режущих сталей.

Применяемые в настоящее время твердые сплавы делятся:

1) на вольфрамовые сплавы группы ВК: ВКЗ, ВКЗ-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др. В условном обозна­чении цифра показывает процентное содержание кобаль­та. Например, обозначение ВК8 показывает, что в нем 8 % кобальта и 92 % карбидов вольфрама. Буквами М и ОМ обозначается мелкозернистая и особо мелко­зернистая структура;

2) на титановольфрамовые сплавы группы ТК:

Т5К10, Т15К6, Т14К8, ТЗОК4, Т60К6 и др. В условном обозначении цифра, стоящая после буквы Т, показывает процентное содержание карбидов титана, после буквы К — кобальта, остальное — карбиды вольфрама;


Табл. 4. Марки, химический состав и свойства вольфрамосодержащнх твердых сплавов

Табл. 5. Марки, химический состав и свойства безвольфрамовых твердых сплавов

 

3) на титанотанталовольфрамовые сплавы группы ТТК: ТТ7К12, ТТ8К6, ТТ20К9 и др. В условном обозна­чении цифры, стоящие после буквы Т, показывают процентное содержание карбидов титана и тантала, после буквы К — кобальта, остальное — карбиды вольфрама;

4) на безвольфрамовые твердые сплавы ТМ-1, ТМ-3, ТН-20, КНТ-16, ТС20ХН, состав которых приведен в табл. 6.3. Обозначения этой группы твердых сплавов условные.

Твердые сплавы выпускаются в виде стандартизо­ванных пластин, которые припаиваются, приклеиваются или крепятся механически к державкам из конструк­ционной стали. Выпускаются также инструменты, рабо­чая часть которых целиком выполнена из твердого спла­ва (монолитные).

Правильным выбором марки твердого сплава обеспе­чивается эффективная эксплуатация режущих инструмен­тов. Для конкретного случая обработки сплав выбирают исходя из оптимального сочетания его теплостойкости и прочности. Например, сплавы группы ТК имеют более высокую теплостойкость, чем сплавы ВК. Инструменты, изготовленные из этих сплавов, могут использоваться при высоких скоростях резания, поэтому их широко при­меняют при обработке сталей.

Инструменты из твердых сплавов группы ВК приме­няют при обработке деталей из конструкционных сталей в условиях низкой жесткости системы СПИД, при пре­рывистом резании, при работе с ударами, а также при обработке хрупких материалов типа чугуна, что обуслов­лено повышенной прочностью этой группы твердых спла­вов и невысокими температурами в зоне резания.

Такие сплавы используются также при обработке деталей из высокопрочных, жаропрочных и нержавеющих сталей, титановых сплавов. Это объясняется тем, что наличие в большинстве этих материалов титана вызывает повышенную адгезию со сплавами группы ТК, также содержащими титан. Кроме того, сплавы группы ТК имеют значительно худшую теплопроводность и более низкую прочность, чем сплавы ВК.

Введение в твердый сплав карбидов тантала или кар­бидов тантала и ниобия (ТТ10К8-Б) повышает его проч­ность. Поэтому трех- и четырехкарбидные твердые сплавы применяются для оснащения инструментов, работающих с ударами и по загрязненной корке. Однако температура теплостойкости этих сплавов ниже, чем у двухкарбидных. Из твердых сплавов с существенно улучшенной струк­турой следует отметить особомелкозернистые, применя­емые для обработки материалов с большой истирающей способностью. Сплавы ОМ обладают плотной, особо-мелкозернистой структурой, а также имеют малый (до 0,5 мкм) размер зерен карбидов вольфрама. Последнее обстоятельство позволяет затачивать и доводить инстру­мент, изготовленный из них, с наименьшими радиусами режущих кромок. Инструменты из сплавов этой группы применяются для чистовой и получистовой обработки деталей из высокопрочных вязких сталей с повышенной склонностью к наклепу.

Незначительное добавление в состав сплавов группы ОМ карбида тантала и кобальта способствует повыше­нию их теплостойкости, что позволяет использовать эти сплавы при изготовлении инструментов, предназначенных для черновой обработки деталей из различных сталей. Весьма эффективна замена карбидов тантала карбидами хрома. Это обеспечивает получение сплавов с мелкозер­нистой однородной структурой и высокой износостойко­стью . Представителем таких материалов является сплав ВК10-XOM.

Сплавы с низким процентным содержанием кобальта (ТЗОК4, ВКЗ, ВК4) обладают меньшей вязкостью и при­меняются для изготовления инструментов, срезающих тонкие стружки на чистовых операциях. Наоборот, спла­вы с большим содержанием кобальта (ВК8, Т14К8„ Т5К10) являются более вязкими и применяются при сня­тии стружек большого сечения на черновых операциях.

Работоспособность твердых сплавов значительно воз­растает при нанесении на них износостойких покры­тий .

Минералокерамика. Из современных инструменталь­ных материалов заслуживает внимание минералокерамика, которая не содержит дорогостоящих и дефицитных элементов. Основу ее составляют оксиды алюминия АOз с небольшой добавкой (0,5...1 %) оксида магния MgO. Высокая твердость минералокерамики, теплостой­кость до 1200°С, химическая инертность к металлам, сопротивление окислению во многом превосходят эти же параметры твердых сплавов. Однако минералокерамика уступает этим сплавам по теплопроводности, имеет более низкий предел прочности на изгиб.

Современная минералокерамика, созданная в СССР и за рубежом, по прочности приближается к наиболее износостойким твердым сплавам. Минералокерамику на основе оксида алюминия можно разделить на три группы:

1) чисто оксидная керамика (белая), основу которой составляет оксид алюминия с незначительными приме­сями (АlОз — до 99,7 %);

2) керамика, представляющая собой оксид алюминия с добавлением металлов (титан, ниобий и др.);

3) оксидно-карбидная (черная) керами­ка — оксид алюминия с добавлением карбидов тугоплав­ких металлов (титана, вольфрама, молибдена) для повы­шения ее прочностных свойств и твердости.

Отечественная промышленность в настоящее время выпускает оксидную керамику ЦМ-332, ВО-13 и оксидно-карбидную ВЗ, ВОК-60, ВОК-63, в состав которой входит до 40 % карбидов титана, вольфрама и молибдена. Наряду с материалами на основе оксида алюминия выпускается материал на основе нитрида кремния — силинит-Р и кортинит ОНТ-20 (с добавками оксидов алюминия и неко­торых других веществ). Физико-механические свойства режущей минералокерамики приведены в табл. 6.4.

Высокие режущие свойства инструментов из минерало­керамики проявляются при скоростной обработке сталей и высокопрочных чугунов, причем чистовое и получистовое точение и фрезерование повышает производительность обработки деталей до 2 раз при одновременном возраста­нии периодов стойкости инструментов до 5 раз по сравнению с обработкой инструментами из твердого сплава.

Минералокерамика выпускается в виде неперета­чиваемых пластин, что существенно облегчает условия ее эксплуатации.


Табл. 6. Физико-механические свойства режущей минералокерамики

 



Дата добавления: 2020-03-21; просмотров: 712;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.