Гидрооборудование и элементы гидро- и пневмоавтоматики
6.1Гидравлические линии
В гидросистемах машин отдельные элементы находятся на расстоянии друг от друга и соединяются между собой гидролиниями. Гидролинии должны обладать:
- достаточной прочностью;
- минимальными потерями давления на преодоление гидравлических сопротивлений;
- отсутствием утечек жидкости;
- отсутствием в трубах воздушных пузырей.
6.1.1 Трубопроводы
Трубопроводы в зависимости от своей конструкции делятся на жесткие и гибкие.
Жесткие трубопроводы изготавливают из стали, меди, алюминия и его сплавов. Стальные применяют при высоких давлениях (до 320 атм). Трубы из сплавов алюминия применяют при давлениях до 150 атм и главным образом в гидросистемах машин с ограниченной массой (авиация). Медные трубопроводы при меньших давлениях (до 50 атм), там, где требуется изгиб труб под большими углами, что обеспечивает компактность гидросистемы, и применяются для дренажных линий.
Гибкие трубопроводы(рукава) бывают двух видов: резиновые и металлические. Для изготовления резиновых рукавов применяют натуральную и синтетическую резину. Рукав состоит из эластичной внутренней резиновой трубки, упрочненной наружной оплеткой или внутренним текстильным каркасом (рис.6.1). Их применяют тогда, когда соединяемые трубопроводом гидроагрегаты должны перемещаться относительно друг друга. При этом благодаря своей упругости резиновый рукава уменьшают пульсацию давления в гидросистеме. Они имеют следующие недостатки: подвижность при изменении давления; снижение общей жесткости гидросистемы; малая долговечность (1,5…3 года). Поэтому при проектировании гидросистем машин резиновых рукавов следует по возможности избегать.
Рисунок 6.1 - Рукава с оплеткой: 1 - внутренний резиновый слой; 2 - металлическая оплетка; 3 - промежуточный резиновый слой; 4 - наружный резиновый слой
Металлические рукава (рисунок 6.2) имеют гофрированную внутреннюю трубу, выполненную из бронзовой или стальной ленты, и наружную проволочную оплетку. Между витками ленты находится уплотнитель. Рукава с хлопчатобумажным уплотнением предназначены для работы с температурой рабочей жидкости до 110 С, а с асбестовым уплотнением - до 300 С. Металлические рукава применяют в специфических условиях эксплуатации гидросистем, в контакте с агрессивными рабочими жидкостями.
Рисунок 6.2 - Металлические рукава: 1 - профилированная лента; 2 - уплотнитель; 3 - проволочная оплетка
6.1.2 Соединения
Соединениями отдельные трубы и гидроагрегаты монтируются в единую гидросистему. Кроме того, соединения применяют и тогда, когда в гидросистеме необходимо предусмотреть технологические разъемы. Соединения могут быть неразборными и разборными.
Неразборные соединения применяют в недемонтируемых гидросистемах. Для соединения труб применяют сварку и пайку встык или используют муфты (переходные втулки) с прямыми и скошенными под углом 30 концами. При применении неразборных соединений масса гидролиний может быть уменьшена на 25…30% по сравнению с применением разборных соединений.
Разборные соединения (неподвижные и подвижные) - это соединения при помощи фланцев, штуцеров, ниппелей и других соединительных элементов.
Неподвижное разборное соединение может быть выполнено по наружному и внутреннему конусу, с врезающимся кольцом и фланцевое.
Рисунок 6.3 - Соединение по наружному конусу
Соединение по наружному конусу (рис. 6.3) состоит из трубопровода 1 с развальцованным на конус концом, ниппеля 2, штуцера 3 и накидной гайки 4. Герметичность соединения обеспечивается плотным прилеганием развальцованного конца трубы к наружной поверхности штуцера и соответствующей затяжкой накидной гайки. Недостатками такого соединения являются: уменьшение прочности трубы в месте раструба; возможность образования незаметных для глаза кольцевых трещин; сравнительно большой момент затяжки накидной гайки; небольшое количество переборок; применение специализированного инструмента для развальцовки.
Рисунок 6.4 - Соединение по внутреннему конусу
Неподвижное разборное соединение по внутреннему конусу (рис.6.4) состоит из ниппеля 4, приваренного или припаянного к трубе 5, штуцера 2 и накидной гайки 1. Герметичность соединения обеспечивается плотным прилеганием наружной поверхности ниппеля к внутренней поверхности штуцера и затяжной накидной гайки. Соединение по внутреннему конусу допускает большое количество переборок, а при его монтаже не происходит нежелательных деформаций в трубах и в соединительной арматуре. Благодаря сферической поверхности ниппеля допускается небольшой перекос труб.
Рисунок 6.5 - Соединение с врезающимся кольцом
Соединение с врезающимся кольцом (рис.6.5) состоит из штуцера 1 с внутренней конической поверхностью 2, накидной гайки 5 и врезающегося кольца 3. Кольцо изготовлено из стали с цементированной поверхностью, а его конец, обращенный к штуцеру, имеет режущую кромку. При затяжке соединения гайкой режущая кромка врезается в трубу 4, происходит деформация кольца, которое получает форму, соответствующую конической поверхности штуцера. В результате обеспечиваются требуемые прочность и герметичность соединения.
Рисунок 6.6 - Фланцевое соединение
К неподвижным разборным соединениям относится и фланцевое соединение (рис.6.6), которое применяют при монтаже гидросистем с трубами, имеющими диаметр условного прохода более 32 мм при рабочих давлениях до 32 МПа. Герметичность обеспечивается установкой между фланцами уплотнительных колец.
Способ заделки в концах гибких трубопроводов соединительной арматуры определяется давлением и конструкцией гибкого трубопровода. При давлении до 0,5 МПа (рис.6.7, а) конец рукава навинчивают на наконечник или на ниппель 1 с гребенчатой поверхностью и закрепляют хомутом 2. При давлениях до 10 МПа соединение конца рукава происходит в результате зажатия его между ниппелем и зажимной муфтой (обоймой). При таком способе (рис.6.7, б) рукав 1 ввинчивают в зажимную муфту 2, имеющую резьбу с большим шагом. Далее в муфту ввинчивают ниппель 3, который своей конусной поверхностью вдавливает конец рукава в резьбу муфты и зажимает его. Для давлений более 10 МПа муфту 2 обжимают в специальном цанговом приспособлении. Накидной гайкой 4 производят соединение рукава с гидрооборудованием.
а) б)
Рисунок 6.7 - Заделка концов рукавов: а - при давлении до 0,5 МПа;
б - при давлении свыше 10 МПа
6.2Гидроаппаратура станков
Гидроаппаратами называются устройства, предназначенные для изменения или поддержания заданных параметров потока рабочей жидкости (давления, расхода) либо изменения направления движения. По характеру выполнения своих функций все гидроаппараты делятся на регулирующие и направляющие.
Регулирующий – это гидроаппарат, в котором изменение соответствующего параметра потока рабочей жидкости происходит путем частичного изменения проходного сечения в нем.
Направляющий – это гидроаппарат, который изменяет направление потока рабочей жидкости путем полного открытия или полного перекрытия проходного сечения в нем.
Под проходным сечением гидроаппарата понимается сечение потока, площадь которого определяет расход рабочей жидкости, проходящей через гидроаппарат.
Основным элементом гидроаппаратов является запорно-регулирующий элемент – деталь (или группа деталей), при перемещении которой частично или полностью перекрывается проходное сечение гидроаппарата. По конструкции запорно-регулирующего элемента гидроаппараты делятся:
– на золотниковые, в которых запорно-регулирующим элементом является цилиндрический (рисунок 6.8 а) или плоский (рисунок 6.8 б) золотник;
– на крановые, в которых запорно-регулирующим элементом является плоский (рисунок 6.8 в), цилиндрический (рисунок 6.8 г), конический (рисунок 6.8 д) или сферический (рисунок 6.8 е) кран;
– на клапанные, в которых запорно-регулирующим элементом является шариковый (рисунок 6.8 ж), конусный (рисунок 6.8 и), игольчатый (рисунок 6.8 к) или плоский (рисунок 6.8 л) клапан.
Рисунок 6.8 – Запорно-регулирующие элементы гидроаппаратов: а – золотник цилиндрический; б – золотник плоский; в – кран плоский; г – кран цилиндрический; д – кран конический; е – кран сферический; ж – клапан шариковый; и – клапан конусный; к – клапан игольчатый; л – клапан плоский (тарельчатый)
Все гидроаппараты, использующиеся в объемных гидроприводах, можно разделить на три основных класса: гидравлические дроссели (гидродроссели), гидравлические клапаны (гидроклапаны) и гидравлические распределители (гидрораспределители).
6.2.1 Гидродроссели
Гидродроссель – это устройство, устанавливающее определенную связь между перепадом давления до и после дросселя и пропускаемым расходом.
Гидродроссель представляет собой регулирующий гидроаппарат. Особенностью его является то, что поток жидкости, проходящий через гидродроссель, не влияет на размер его проходного сечения.
Под характеристикой гидродросселя понимается зависимость потерь давления ∆рдрв гидродросселе (перепада давления на гидродросселе) от расхода рабочей жидкости Q, проходящей через него. По виду этой зависимости различают линейные и квадратичные дроссели.
Линейные гидродроссели имеют линейную характеристику ∆рдр = KQ.
Рисунок 6.9 - Гидродроссели: 1 -плунжер; 2 -корпус; 3 -винтовая головка; 4 -запорно-регулирующий элемент; 5 - седло; а -линейный регулируемый; б -жиклер; в -пакетный; ; г -условные обозначения дросселей; д - клапанный, или игольчатый
На рисунке 6.9, а приведена конструктивная схема линейного регулируемого гидродросселя. Ламинарный режим течения обеспечивается в винтовой канавке прямоугольного сечения, нарезанной на поверхности цилиндрического плунжера 1, установленного в корпусе 2. Регулирование сопротивления гидродросселя осуществляется путем изменения рабочей длины lк дросселирующего канала за счет вращения винтовой головки 3.
Основным недостатком линейного гидродросселя является зависимость его характеристики от вязкости рабочей жидкости, а, следовательно, и от температуры. Из-за этой температурной нестабильности характеристики линейные гидродроссели в системах управления объемными гидроприводами применяются редко.
Квадратичные гидродроссели имеют квадратичную характеристику. Характеристика этих гидродросселей мало зависит от температуры рабочей жидкости, поэтому они получили наибольшее распространение в объемных гидроприводах.
Простейшим квадратичным настраиваемым гидродросселем является жиклер (рисунок 6.9, б). Если такой гидродроссель по условиям работы гидросистемы должен обеспечить достаточно большой перепад давления при относительно малых расходах, то при этом в гидродросселе необходимо иметь отверстие очень малой площади. Однако тогда высока вероятность его засорения, а значит, самопроизвольного изменения характеристики гидродросселя, т.е. надежность работы такого гидродросселя будет низкой.
На практике при решении подобной задачи используются пакетные гидродроссели (рисунок 6.9 в). Такой гидродроссель состоит из набора шайб, отверстия в которых смещены друг относительно друга.
Варианты условных обозначений настраиваемого (нерегулируемого) и регулируемого гидродросселя в схемах гидросистем приведены на рисунке 6.9 г.
Регулируемые гидродросселив зависимости от вида запорно-регулирующего элемента разделяются на крановые, золотниковые, клапанные (игольчатые), а также дроссели типа «сопло–заслонка».
В клапанном, или игольчатом, гидродросселе (рисунок 6.9 д)изменение площади проходного сечения происходит за счет вертикального перемещения запорно-регулирующего элемента 4 с углом конуса относительно седла 5 (элемент 4 приближается к седлу или удаляется от него). Недостатком гидродросселя является то, что его запорно-регулирующий элемент не разгружен от давления в потоке жидкости, а значит усилие, необходимое для управления, зависит от этого давления.
6.2.2 Гидроклапаны
Гидроклапан – это гидроаппарат, в котором проходное сечение (положение запорно-регулирующего элемента) изменяется под воздействием потока рабочей жидкости.
По характеру воздействия потока рабочей жидкости на запорно-регулирующий элемент клапана различают гидроклапаны давления прямого и непрямого действия.
В гидроклапане давления прямого действия проходное сечение изменяется в результате непосредственного воздействия контролируемого потока рабочей жидкости на запорно-регулирующий элемент клапана.
Гидроклапаны давления непрямого действия представляют собой совокупность, как правило, двух клапанов: основного и вспомогательного, причем величина открытия рабочего проходного сечения основного клапана изменяется в результате воздействия потока рабочей жидкости на запорно-регулирующий элемент вспомогательного клапана.
Гидроклапаны могут быть направляющими и регулирующими.
Дата добавления: 2016-06-22; просмотров: 2910;