НАЧАЛО СОВРЕМЕННОЙ ИСТОРИИ ЭЛЕКТРОННОЙ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ


 

Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств. Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.

Первой действующей ЭВМ стал ENIAC (США, 1945 - 1946 гг.). Его название по первым буквам соответствующих английских слов означает «электронно-числовой интегратор и вычислитель». Руководили ее созданием Джон Моучли и Преспер Эккерт, продолжившие начатую в конце 30-х годов работу Джорджа Атанасова. Машина содержала порядка 18 тысяч электронных ламп, множество электромеханических элементов. Ее энергопотребление равнялось 150 кВт, что вполне достаточно для обеспечения небольшого завода.

Практически одновременно велись работы над созданием ЭВМ в Великобритании. С ними связано прежде всего имя Аллана Тьюринга - математика, внесшего также большой вклад в теорию алгоритмов и теорию кодирования. В 1944 г. в Великобритании была запущена машина «Колосс».

Эти и ряд других первых ЭВМ не имели важнейшего с точки зрения конструкторов последующих компьютеров качества - программа не хранилась в памяти машины, а набиралась достаточно сложным образом с помощью внешних коммутирующих устройств.

Огромный вклад в теорию и практику создания электронной вычислительной техники на начальном этапе ее развития внес один из крупнейших американских математиков Джон фон Нейман. В историю науки навсегда вошли «принципы фон Неймана». Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ. Один из важнейших принципов - принцип хранимой программы - требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация. Первая ЭВМ с хранимой программой (EDSAC) была построена в Великобритании в 1949 г.



 

Рис. 4.3. Джон фон Нейман (1903-1957)

Рис. 4.4. Сергей Александрович Лебедев (1902- 1974)

 

В нашей стране вплоть до 70-х годов создание ЭВМ велось почти полностью самостоятельно и независимо от внешнего мира (да и сам этот «мир» был почти полностью зависим от США). Дело в том, что электронная вычислительная техника с самого момента своего первоначального создания рассматривалась как сверхсекретный стратегический продукт, и СССР приходилось разрабатывать и производить ее самостоятельно. Постепенно режим секретности смягчался, но и в конце 80-х годов наша страна могла покупать за рубежом лишь устаревшие модели ЭВМ (а самые современные и мощные компьютеры ведущие производители - США и Япония - и сегодня разрабатывают и производят в режиме секретности).

Первая отечественная ЭВМ - МЭСМ («малая электронно-счетная машина») -была создана в 1951 г. под руководством Сергея Александровича Лебедева, крупнейшего советского конструктора вычислительной техники, впоследствии академика, лауреата государственных премий, руководившего созданием многих отечественных ЭВМ. Рекордной среди них и одной из лучших в мире для своею времени была БЭСМ-6 («большая электронно-счетная машина, 6-я модель»), созданная в середине 60-х годов и долгое время бывшая базовой машиной в обороне, космических исследованиях, научно-технических исследованиях в СССР. Кроме машин серии БЭСМ выпускались и ЭВМ других серий - «Минск», «Урал», М-20, «Мир» и другие, созданные под руководством И.С.Брука и М.А.Карцева, Б.И.Рамеева, В.М.Глушкова, Ю.А.Базилевского и других отечественных конструкторов и теоретиков информатики.

С началом серийного выпуска ЭВМ начали условно делить по поколениям; соответствующая классификация изложена ниже.

Рис. 4.5. Первая в мире ЭВМ ENIAC

 

ПОКОЛЕНИЯ ЭВМ

 

В истории вычислительной техники существует своеобразная периодизация ЭВМ по поколениям. В ее основу первоначально был положен физико-технологический принцип: машину относят к тому или иному поколению в зависимости от используемых в ней физических элементов или технологии их изготовления. Границы поколений во времени размыты, так как в одно и то же время выпускались машины совершенно разного уровня. Когда приводят даты, относящиеся к поколениям, то скорее всего имеют в виду период промышленного производства; проектирование велось существенно раньше, а встретить в эксплуатации весьма экзотические устройства можно и сегодня.

В настоящее время физико-технологический принцип не является единственным при определении принадлежности той или иной ЭВМ к поколению. Следует считаться и с уровнем программного обеспечения, с быстродействием, другими факторами, основные из которых сведены в прилагаемую табл. 4.1.

Следует понимать, что разделение ЭВМ по поколениям весьма относительно. Первые ЭВМ, выпускавшиеся до начала 50-х годов, были «штучными» изделиями, на которых отрабатывались основные принципы; нет особых оснований относить их к какому-либо поколению. Нет единодушия и при определении признаков пятого поколения. В середине 80-х годов считалось, что основной признак этого (будущего) поколения - полновесная реализация принципов искусственного интеллекта. Эта задача оказалась значительно сложнее, чем виделось в то время, и ряд специалистов снижают планку требований к этому этапу (и даже утверждают, что он уже состоялся). В истории науки есть аналоги этого явления: так, после успешного запуска первых атомных электростанций в середине 50-х годов ученые объявили, что запуск многократно более мощных, дающих дешевую энергию, экологически безопасных термоядерных станций, вот-вот произойдет; однако, они недооценили гигантские трудности на этом пути,так как термоядерных электростанций нет и по сей день.

В то же время среди машин четвертого поколения разница чрезвычайно велика, и поэтому в табл. 4.1 соответствующая колонка разделена на на две: А и Б. Указанные в верхней строчке даты соответствуют первым годам выпуска ЭВМ. Многие понятия, отраженные в таблице, будут обсуждаться в последующих разделах учебника; здесь ограничимся кратким комментарием.

Чем младше поколение, тем отчетливее классификационные признаки. ЭВМ первого, второго и третьего поколений сегодня, в конце 90-х годов - в лучшем случае музейные экспонаты. Машина первого поколения - десятки стоек, каждая размером с большой книжный шкаф, наполненных электронными лампами, лентопротяжными устройствами, громоздкие печатающие агрегаты, и все это на площади сотни квадратных метров, со специальными системами охлаждения, источниками питания, постоянно гудящее и вибрирующее (почти как в цехе машиностроительного завода). Обслуживание - ежечасное. Часто выходящие из строя узлы, перегорающие лампы, и вместе с тем невиданные, волшебные возможности для тех, кто, например, занят математическим моделированием. Быстродействие до 1000 оп/с и память на 1000 чисел делало доступным решение задач,к которым раньше нельзя было и подступиться.

Приход полупроводниковой техники (первый транзистор был создан в 1948 г., а первая ЭВМ с их использованием - в 1956 г.) резко изменил вид машинного зала -более нормальный температурный режим, меньший гул (лишь от внешних устройств) и, самое главное, возросшие возможности для пользователя. Впрочем, непосредственного пользователя к машинам первых трех поколений почти никогда

 

Таблица 4.

Поколения ЭВМ

 

  Показатель   Поколения ЭВМ  
Первое 1951-1954   Второе 1958-I960   Третье 1965-1966   Четвертое     Пятое ?  
А 1976-1979 Б 1985-?
Элементная база процессора   Электронные лампы Транзисторы     Интграль-ные схемы (ИС)   Большие ИС (БИС)     СвербольшиеИС (СБИС)   +Оптоэлек-троника +Криоэлек-троника
Элементная база ОЗУ   Электронно-лучевые трубки   Феррито-вые сердечники   Ферритовые сердечники   БИС   СБИС   СБИС  
Максмальная емкость ОЗУ, байт   102   101   104   105   107   108 (?)  
Максимальное быстродействие процессора (оп/с)   104   106   107   108   109 +Многопро-цессорность   1012 , +Многопро-цессорность  
Языки программирования   Машинный код   + Ассемблер   + Процедурные языки высокого уровня (ЯВУ)   + Новые процедурные ЯВУ   +Непроце-дурные ЯВУ   + Новые непрцедур-ные ЯВУ  
Средства связи пользователя с ЭВМ Пульт управления и перфокарты Перфокарты и перфоленты Алфавитно- цифровой терминал Монохром- ный графиче- ский дисплей, клавиатура Цветной + графический дисплей, клавиатура, «мышь» и др. Устройства голосовой связи с ЭВМ

 

не подпускали - около них колдовали инженеры, системные программисты и операторы, а пользователь чаще всего передавал в узкое окошечко или клалнастеллаж в соседнем помещении рулон перфоленты или колоду перфокарт,накоторых была его программа и входные данные задачи. Доминировал для машин первого и второго поколении монопольный режим пользования машиной и/или режим пакетной обработки; в третьем поколении добавился более выгодный экономически и более удобный для пользователей удаленныйдоступ - работа черезвыносные терминалы в режиме разделения времени.

Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей. Так, небольшие отечественные машины второго поколения («Наири», «Раздан», «Мир» и др.) с производительностью порядка 104 оп/с были в конце 60-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на 2 - 3 порядка выше.

В начале 70-х годов, с появлением интегральных технологий в электронике, были созданы микроэлектронные устройства, содержащие несколько десятков транзисторов и резисторов на одной небольшой (площадью порядка 1 см2 ) кремниевой подложке. Без пайки и других привычных тогда в радиотехнике действий на них «выращивались» электронные схемы, выполняющие функции основных логических узлов ЭВМ (триггеры, сумматоры, дешифраторы, счетчики и т.д.). Это позволило перейти к третьему поколению ЭВМ. техническая база которого - интегральные схемы.

При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе, а потом забывают. Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.

Уже в третьем поколении появились крупные унифицированные серии ЭВМ. Для больших и средних машин в США это прежде всею семейство IBM 360/370. В СССР 70-е и 80-е годы были временем создания унифицированных серии: ЕС (единая система) ЭВМ (крупные и средние машины), СМ (система малых) ЭВМ и «Электроника» (серия микро-ЭВМ). В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале 90-х годов, но многие из них еще используются в самых разных сферах деятельности, включая образование (например, компьютеры ДВК, БК, а также УКНЦ - аналоги мини-ЭВМ типа PDP-11 фирмы DEC).

Рис. 4.6. ЭВМ третьего поколения



Дата добавления: 2020-02-05; просмотров: 623;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.