Дифференцирующее звено первого порядка
Дифференцирующее звено 1–го порядка имеет передаточную функцию вида
(4.10)
где k – передаточный коэффициент звена; t – постоянная времени.
Уравнение этого звена
(4.11)
получим из (4.2) при
При этом
Выходная величина этого звена определяется не только текущим значением, но и скоростью изменения входной величины.
Характеристики звена:
а) Переходная функция определяется выражением
(4.12)
При скачкообразном изменении входной величины
на выходе звена получим импульс с бесконечно большой амплитудой, соответствующий бесконечно большой скорости изменения входной величины в момент скачка. После этого выходная величина принимает постоянное установившееся значение
.
б) Частотные характеристики звена имеют вид:
(4.13)
где
, 
АФХ звена изображена на рис. 4.3. АФХ – прямая, параллельная мнимой оси. Она начинается на действительной оси в точке k при w=0.
Дифференцирующее звено создает опережение выходной величины по фазе. При
сдвиг по фазе стремится к 90°.
в) Уравнение ЛАХ:
(4.14)
Для частот
в выражении (4.14) можно пренебречь величиной
по сравнению с 1, а для частот
наоборот,
можно пренебречь единицей по сравнению с величиной
. Тогда приближенно можно записать
(4.15)
Соотношения (4.15) показывают, что ЛАХ дифференцирующего звена 1-го порядка приближенно может быть представлена двумя прямолинейными отрезками (асимптотами). В граничной точке
Действительное значение ЛАХ в точке
отличается от приближенного значения примерно на 3 дБ. Частота
называется частотой сопряжения асимптотической ЛАХ. Линия
параллельна оси частот, а линия
имеет положительный наклон +20 дБ/дек. На рис. 4.4 изображены ЛАХ и ЛФХ дифференцирующего звена 1-го порядка, построенные в зависимости от безразмерной (нормированной) частоты
Нетрудно убедиться, что сопрягающей частотой будет значение
а ветвь
также будет иметь положительный наклон +20 дБ/дек. В логарифмическом масштабе частот характеристика
косо-симметрична относительно сопрягающей частоты
, при которой она имеет ординату 45°.
Дата добавления: 2022-05-27; просмотров: 205;











