Метод Блейка - Порецкого


Метод позволяет получать сокращенную ДНФ булевой функции f из ее произвольной ДНФ. Базируется на применении формулы обобщенного склеивания:

,

справедливость которой легко доказать. Действительно,

, .

Следовательно,

В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции f произвести все возможные oбобщенные склеивания, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции f.

Рассмотрим пример. Пусть булева функция f задана произвольной ДНФ.

Необходимо, используя метод Блейка – Порецкого, получить сокращенную ДНФ функции f. Проводим обобщенные склеивания. Легко видеть, что первый и второй элемент исходной ДНФ допускают обобщенное склеивание по переменной х1. В результате склеивания получим:

Первый и третий элемент исходной ДНФ допускают обобщенное склеивание как по переменной х1, так и по х2. После склеивания по x1 имеем:

После склеивания по x2 имеем:

Второй и третий элемент ДНФ допускают обобщенное склеивание по переменной х2. После склеивания получаем:

Выполнив последнее обобщенное склеивание, приходим к ДНФ:

После выполнения поглощений получаем:

Попытки дальнейшего применения операции обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции f. Далее задача поиска минимальной ДНФ решается с помощью импликантной матрицы точно так же, как в методе Квайна.

 



Дата добавления: 2022-02-05; просмотров: 227;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.