ГОМЕОСТАЗ – ПОДДЕРЖАНИЕ ПОСТОЯНСТВА ВНУТРЕННЕЙ СРЕДЫ ОРГАНИЗМА

Гомеостаз

Поддержание постоянства внутренней среды организма называется гомеостазом. Главную ответственность за гомеостатическую регуляцию несут вегетативный и кишечный отделы периферической нервной системы, а также центральная нервная система, отдающая организму приказы через гипофиз и другие эндокринные органы. Действуя совместно, эти системы согласовывают потребности тела с условиями окружающей среды.

Французский физиолог Клод Бернар, живший в XIX в. и целиком посвятивший себя изучению процессов пищеварения и регуляции кровотока, рассматривал жидкости тела как «внутреннюю среду». У разных организмов концентрация определенных солей и нормальная температура могут быть несколько различными, но в пределах вида внутренняя среда индивидуумов соответствует характерным для этого вида стандартам. Допускаются лишь кратковременные и не очень большие отклонения от этих стандартов, иначе организма не может оставаться здоровым и способствовать выживанию вида.

Уолтер Б. Кеннон, крупнейший американский физиолог середины XX столетия, расширил концепцию Бернара о внутренней среде. Он считал, что независимость индивидуума от непрерывных изменений внешних условия обеспечивает работу гомеостатических механизмов, которые поддерживают постоянство внутренней среды.

Способность организма справляться с требованиями, выдвигаемыми окружающей средой, сильно варьируют от вида к виду. Человек, использующий в дополнение к внутренним механизмам гомеостаза сложные типы поведения, по-видимому, обладает наибольшей независимостью от внешних условий. Тем не менее, многие животные превосходят его в определенных видоспецифических возможностях. Например, полярные медведи более устойчивы к холоду; некоторые виды пауков и ящериц, живущие в пустынях, лучше переносят жару; верблюды могут дольше обходиться без воды.

Центральная регуляция функций вегетативной нервной системы.

ЦНС осуществляет контроль над вегетативной системой в гораздо меньшей степени, чем над сенсорной или скелетной двигательной системой. Области мозга, которые больше всего связаны с вегетативными функциями, - это гипоталамус и ствол мозга, в особенности та его часть, которая расположена прямо над спинным мозгом, - продолговатый мозг. Именно из этих областей идут основные проводящие пути к симпатическим и парасимпатическим преганглионарным автономным нейронам на спинальном уровне.

Гипоталамус.

Гипоталамус – это одна из областей мозга, общая структура и организация которой более или менее сходна у представителей различных классов позвоночных животных.

В целом принято считать, что гипоталамус – это средоточие висцеральных интегративных функций. Сигналы от нейронных систем гипоталамуса непосредственно поступают в сети, которые возбуждают преганглионарные участки вегетативных нервных путей. Кроме того, эта область мозга осуществляет прямой контроль над всей эндокринной системой через посредство специфических нейронов, регулирующих секрецию гормонов передней доли гипофиза, а аксоны других гипоталамических нейронов оканчиваются в задней доле гипофиза. Здесь эти окончания выделяют медиаторы, которые циркулируют в крови как гормоны:

1) вазопрессин, повышающий кровяное давление в экстренных случаях, когда происходит потеря жидкости или крови; он также уменьшает выделение воды с мочой;

2) окситоцин, стимулирующий сокращение матки на завершающей стадии родов.

Следует обратить внимание, что аксоны (сигнальный выход нейрона, который может тянуться до метра длиной, или "нервы") могут возбуждать не только мышцы, но и быть причиной возбуждения последующих нейронов, или просто выделять активные вещества-регуляторы "медиаторы". Все, что угодно, что в ходе эволюции нервной системы оказалось полезным.

Продолговатый мозг.

Гипоталамус составляет менее 5 % от всей массы мозга. Однако, в этом небольшом количестве тканей содержатся центры, которые поддерживают все функции организма, за исключением спонтанных дыхательных движений, регуляции кровяного давления и ритма сердца. Эти последние функции зависят от продолговатого мозга. При черепно-мозговых травмах так называемая «смерть мозга» наступает тогда, когда исчезают все признаки электрической активности коры и утрачивается контроль со стороны гипоталамуса и продолговатого мозга, хотя с помощью искусственного дыхания еще можно поддерживать достаточное насыщение циркулирующей крови кислородом.

Эндокринная система.

Эндокринный орган отличается тем, что выделяет вещество, необходимое для регуляции клеточной активности каких-то других органов, непосредственно в кровяное русло. Такие органы называются эндокринными железами, а секретируемые ими вещества – гормонами. Каждый гормон влияет на уровень функционирования специфических систем клеток-мишеней – обычно временно повышает их активность. Гормоны – сильнодействующие агенты, поэтому для получения специфического эффекта достаточны ничтожные их количества. Восприимчивые к гормонам клетки снабжены специальными поверхностными молекулами – «рецепторами», которые реагируют даже на очень низкие концентрации гормонов. После соприкосновения рецептора с гормоном внутри клетки происходит ряд изменений.

Такой механизм - очень широко используется в передаче информации, в частности между нейронами, в синаптических щелях, разделяющих их, что чрезвычайно важно для процессов запоминания состояния этих связей - долговременной памяти.

Эндокринные органы и их гормоны.

По традиции эндокринную и нервную системы с их регулирующими и интегрирующими функциями считали отдельными, но параллельно действующими системами. Нейроны выделяют свои химические передатчики – медиаторы – в синаптическую щель для регуляции активности других нейронов.Эндокринные клетки секретируют свои химические передатчики – гормоны – в кровь, которая разносит их ко всем клеткам, имеющим специфические рецепторы. Некоторые вещества действуют в обеих системах; они могут быть и гормонами, и медиаторами. Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин, окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид.

Таким образом, можно различать общую, ненаправленную (или неспецифическую) передачу информации и нацеленную конкретную (синаптическая передача) - специфическую. Природа широко использует и то и другое, "экспериментально" находя наиболее удачные варианты с помощью отбора особей.

Железы, входящие в состав эндокринной системы, - это гипофиз с его независимо функционирующими передней и задней долями, половые железы, щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелудочной железы и секреторные клетки, выстилающие кишечный тракт.

По традиции гипофизу приписывалась также роль «главной железы» эндокринной системы. Однако, новые данные о том, что клетки передней доли гипофиза сами находятся под контролем гипоталамических нейронов, заставили пересмотреть этот взгляд. Передняя доля содержит несколько различных типов эндокринных клеток, каждый из которых вырабатывает один из гипофизарных гормонов и регулируется специфическими гормонами гипоталамуса. Гипоталамус связан с гипофизом небольшой локальной сетью кровеносных сосудов, так называемой воротной системой гипофиза, которая доставляет кровь от основания гипоталамуса к передней доле гипофиза. Гипоталамические нейроны выделяют в кровь этой сети свои гормоны, а соответствующие клетки гипофиза реагируют на эти гормоны после их связывания специфическими поверхностными рецепторами.

До сих пор идентифицированы 6 гипоталамических гормонов, избирательно воздействующих на клетки передней доли гипофиза. Четыре из них стимулируют синтез и секрецию гормонов клетками-мишенями, а два – тормозят.

Эндокринология и гомеостаз. Секреция некоторых гормонов, например тироксина, регулируется очень жестко. Однако, концентрации большинства других гормонов могут в широких пределах изменяться для поддержания постоянства ряда физиологических параметров при непрерывном изменении сиюминутных потребностей организма. Изменения уровней альдостерона и вазопрессина отражают необходимость сохранять постоянный объем крови путем регуляции водно-солевого баланса. Концентрации адреналина и норадреналина зависят от степени общей активности организма и могут быть разными в различных локальных сосудистых сетях. Это позволяет им регулировать силу и частоту сердечных сокращений, а также избирательно воздействовать на сосуды, чтобы обеспечивать приток крови к определенным системам органов в соответствии с потребностями.

Регуляция общего уровня активности. До сих пор мы рассматривали внутренние процессы организма, которые регулируются мозгом. Координируя их, мозг осуществляет общий надзор за тем, что требуется для выполнения текущей деятельности, предугадывает, что понадобится в ближайшем будущем, и приспосабливает имеющиеся ресурсы к возникающим нуждам. Обычно мозг выполняет эти обязанности, не затрагивая деятельности, происходящей на уровне сознания, - за исключение, может быть, тех случаев, когда нужно сделать выбор.

Если мы не осознаем того, что происходит у нас внутри, то на что же в таком случае тратится наше «мыслительное» время? Мы должны соединить наши знания о внешнем мире с теми двигательными программами, которыми мы пользуемся, чтобы поддерживать контакты с этим миром. Мы ощущаем мир с помощью специализированных сенсорных систем. Поступающая информация идет по параллельным каналам к вертикальным клеточным ансамблям коры головного мозга, а затем – по последовательным иерархическим путям внутри мозга. Здесь снова происходит ее объединение. В результате создается общая сенсорная «картина», которую мы используем для того, чтобы подогнать наши двигательные программы к текущей ситуации и сравнить наши возможности действия с аналогичными ситуациями из прошлого опыта. Мир, в котором мы живем, беспрестанно меняется, и наши чувства должны четко улавливать эти изменения, если мы хотим их верно анализировать.

Поддержание постоянства внутренней среды.

Вегетативная нервная система осуществляет общее регулирование путем небольших сдвигов в активности двух своих в целом сбалансированных отделов – симпатической и парасимпатической нервной системы, что приводит к преобладающему влиянию того или другого отдела. Каждый из этих отделов имеет сенсорный компонент, воспринимающий различные физические или химические внутренние факторы, и эффекторный компонент, производящий изменения, необходимые для поддержания постоянства внутренней среды.

Эндокринная система регулирует деятельность разнообразных внутренних органов через посредство промежуточных гормонов, секретируемых гипофизом, который в свою очередь находится под контролем нейронов гипоталамуса. Передняя доля гипофиза контролирует эндокринные железы всего организма. Задняя доля гипофиза выводит в кровяное русло гормоны, секретируемые другими нейронами гипоталамуса. Активность обеих групп гипоталамических нейронов может изменяться под влиянием текущей и прошлой сенсорной информацией, переработанной корковыми и подкорковыми системами.

И вегетативная, и эндокринная системы функционируют таким образом, как если бы они имели целью поддержание некоего «заданного уровня» для каждого физического или химического параметра внутренней среды. Эти системы возбуждают или затормаживают различные физиологические функции, чтобы свести к минимуму отклонения отдельных параметров, несмотря на значительные колебания условий окружающей среды.

Активность систем, которые обеспечивают взаимодействие нашего организма с непрерывно меняющимся внешним миром, тоже должна изменяться. И, действительно, уровень нашего внимания может варьировать в широких пределах – от полного бодрствования до глубокого сна, что связано с действием медиаторов, используемых нейронными сетями с обширной зоной влияния.

Организм - самостоятельно существующая единица органического мира, представляющая собой саморегулирующуюся систему, реагирующую как единое целое на различные изменения внешней Среды. Может существовать только при постоянном взаимодействии с окружающей его внешней средой.

Белки (протеины) - представляют собой сложнейшие химические соединения-полимеры образованные разными сочетаниями 20 различных аминокислот.

Физиологические функции - проявления жизнедеятельности, имеющие приспособительное значение. Осуществляя различные функции, организм приспособляется к внешней среде или же приспособляет среду к своим потребностям.

Обмен веществ (метаболизм) и энергии - совокупность химических и физических изменений, превращений веществ и энергии, постоянно происходящих в организме.

Аэробы - клетки, нуждающиеся в молекулярном кислороде, поступающем в организм из внешней среды и необходимом для процессов окисления питательных веществ до углекислоты и воды.

Внутренняя среда организма - кровь, лимфа и тканевая жидкость, омывающая клетки организма.

Гомеостаз - постоянство химического состава и физико-химических свойств внутренней седы. В поддержании гомеостаза важнейшая роль принадлежит нервной системе.

Ассимиляция - сумма процессов созидания живой материи: усвоение клетками веществ, поступающих в организм из внешней Среды, образование более сложных химических соединений из более простых.

Диссимиляция - разрушение живой материи, распад, расщепление веществ, входящих в состав клеточных структур, в частности, белковых соединений. При этом образуются удаляемые из организма продукты распада.

Дизоксерибонуклеиновая кислота (ДНК) - нуклеиновые кислоты ядра. Подавляющим числом ученых рассматривается как носитель генетической информации, структура которой определяет наследственные свойства организма.

Рибонуклеиновая кислота (РНК) - протоплазма клетки.

Аденозинтрифосфорная кислота (АТФ) - макроэргическое соединение, являющееся при его расщеплении основным поставщиком энергии, используемой при деятельности клеток.

Биологические реакции - изменения структуры и функций организма в ответ на различные раздражители.

Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней Среды или внутреннего состояния организма, если оно достаточно велико, возникло достаточно быстро и продолжается достаточно долго.

адекватные раздражители - действуют на данную биологическую структуру в естественных условиях, к восприятию которых она специально приспособлена и чувствительность к которым у нее чрезвычайно велика.

Рецептор - воспринимающее раздражение нервное окончание.

Возбудимость - способность клеток отвечать на раздражение возбуждением.

Медиатор - химический передатчик нервного импульса.

Рефлексы - реакция организма, происходящие при обязательном участии нервной системы в ответ на раздражение воспринимающих нервных окончаний - рецепторами.

Деятельность нервной системы и химическое взаимодействие клеток и органов обеспечивают важнейшую особенность организма - саморегуляцию физиологических функций.

Нервную систему организма животных и человека подразделяют на соматическую (анимальную) и вегетативную.

Соматическая нервная система обеспечивает иннервацию поперечнополосатой мускулатуры и восприятие раздражении.

Вегетативная нервная система обеспечивает иннервацию внутренних органов, желез внешней и внутренней секреции, кровеносных и лимфатических сосудов, трофическую иннервацию (регулирует обмен веществ) скелетной мускулатуры, рецепторов и самой центральной нервной системы.

Анатомические особенности. Вегетативная нервная система имеет центральную и периферическую части. Центральные части расположены очагово, в виде скопления нейронов (ядер вегетативной нервной системы), заложенных в спинном, продолговатом и среднем мозге.

Вегетативная нервная система имеет два отдела: парасимпатический и симпатический. Ядра, находящиеся в среднем мозге (III пара черепных нервов), продолговатом мозге (VII, IX и Х пары черепных нервов) и крестцовом отделе спинного мозга (ядра тазовых внутренних нервов), являются центрами парасимпатической нервной системы.

Ядра, расположенные в боковых рогах грудного и поясничного отделов спинного мозга (от I грудного до Ц– IV поясничного), образуют центры симпатической нервной системы.

От нейронов вегетативной нервной системы, расположенных в центральной нервной системе, отходят на периферию нервные волокна, которые, не дойдя до иннервируемого органа, прерываются в вегетативных ганглиях. Здесь они образуют многочисленные синапсы на нервных клетках ганглия. Нервные волокна, подходящие к ганглию, называются преганглионарными. Нервные отростки, отходящие от ганглиозных клеток, образуют постганглионарные нервные волокна, которые достигают иннервируемого органа.

Ганглии парасимпатической нервной системы располагаются внутри иннервируемого органа или вблизи неги. Ганглии симпатической нервной системы находятся в отдалении от иннервируемых ими органов. Ганглии симпатической нервной системы образуют так называемую симпатическую цепочку, располагающуюся справа и слева от позвоночного столба, и ряд узлов на более далеком расстоянии от него (чревное сплетение, верхний и нижний брыжеечные узлы). соматических нервов. Отсюда различная скорость проведения нервных импульсов. В соматических нервах нервные импульсы распространяются со скоростью до 120–140 м/сек, в парасимпатических – 10–20 м/сек, в симпатических – 0,4–0,5 м/сек. Волокна нервов вегетативной нервной системы менее возбудимы и обладают более продолжительным рефракторным периодом, чем соматические нервы, поэтому для возбуждения вегетативных нервов необходимо более сильное раздражение.

Парасимпатическая нервная система. От среднего мозга отходят парасимпатические волокна, которые входят в состав глазодвигательного нерва. Эти волокна иннервируют круговую мышцу радужной оболочки глаза, при их возбуждении происходит уменьшение просвета зрачка. Из продолговатого мозга выходят парасимпатические волокна, идущие в составе лицевого, языкоглоточного и блуждающего нервов. Парасимпатические волокна, входящие в состав лицевого и языкоглоточного нервов, иннервируют слюнные железы. При возбуждении этих волокон наблюдается обильное выделение слюны. Блуждающий нерв разветвляясь иннервирует многие внутренние органы: сердце, пищевод, бронхи, альвеолы легких, желудок, тонкий кишечник и верхний отдел толстого, поджелудочную железу, надпочечники, почки, печень, селезенку. От крестцового отдела спинного мозга отходят волокна тазовых внутренних нервов, которые иннервируют органы малого таза: сигмовидную и прямую кишку, мочевой пузырь, половые органы, за исключением матки.

Симпатическая нервная система. Волокна симпатической нервной системы начинаются от нейронов боковых рогов ГРУДНОГО и поясничного отделов спинного мозга. Симпатическая нервная система иннервирует все органы и ткани организма, в том числе скелетные мышцы и центральную нервную систему.

Симпатический и парасимпатический отделы вегетативной нервной системы оказывают на органы, как правило, Противоположное влияние. Например, при возбуждении парасимпатических (блуждающих) нервов ритм сердца замедляется, под влиянием симпатических нервов ускоряется. При повышении активности блуждающих нервов тонус гладкой мускулатуры бронхов повышается, в результате этого просвет их уменьшается. Под влиянием симпатической нервной системы мускулатура бронхов расслабляется и просвет их увеличивается. За счет разнонаправленного влияния двух отделов вегетативной нервной системы на деятельность органов обеспечивается лучшее приспособление организма к условиям существования.

За счет парасимпатической нервной системы осуществляются рефлекторные реакции защитного характера (сужение зрачка при вспышке яркого света); рефлекторные реакции, направленные на сохранение состава и свойств внутренней среды организма (возбуждение блуждающего нерва стимулирует процессы пищеварения и тем самым обеспечивает восстановление уровня питательных веществ в организме). Активация парасимпатческого отдела вегетативной нервной системы способствует опорожнению полых органов (желчного пузыря, мочевого пузыря, прямой кишки).

Возбуждение симпатической нервной системы обеспечивает поддержание постоянства состава внутренней среды организма (гомеостаза). Например, при понижении уровня сахара в крови возбуждение симпатической нервной системы приводит к увеличению активности мозгового вещества надпочечников и выделению адреналина. Током крови гормон доставляется к печени и способствует переходу гликогена в глюкозу, которая поступает в кровь, и уровень сахара восстанавливается.

Симпатическая нервная система не только регулирует работу внутренних органов, но и оказывает влияние на обменные процессы, протекающие в скелетных мышцах и в нервной системе, что было впервые установлено Л. А. Орбели (адаптационно-трофическая функция симпатической нервной системы).

Под адаптационно-трофической функцией симпатической нервной системы следует понимать ее влияние на интенсивность обменных процессов и приспособление их уровня к условиям существования организма.

В лаборатории Л. Л. Орбели на нервно-мышечном препарате лягушки был проведен следующий опыт. Получали тетаническое сокращение мышцы посредством раздражения двигательного нерва. Продолжая раздражать нерв, доводили мышцу до степени утомления. Раздражение в этих условиях симпатического нерва восстанавливало работоспособность скелетной мышцы. Она вновь приобретала способность реагировать тетаническим сокращением на раздражение двигательного нерва.

В настоящее время установлено, что при возбуждении и торможении всех отделов центральной и периферической нервной системы происходит образование физиологически активных веществ – медиаторов.

В зависимости от того, какой медиатор образуется в окончаниях нервных волокон, принято делить их на холинергические и адренергические. Передача возбуждения в холинергических нервных волокнах осуществляется при помощи ацетилхолина, а в адренергических – норадреналина. Холинергическими являются все преганглионарные нервные волокна (парасимпатические и симпатические), все постганглионариые нервные волокна парасимпатической нервной системы и соматические нервы. Адренергическими являются все постганглионарные симпатические нервы, за исключением нервов потовых желез и симпатических нервов, расширяющих кровеносные сосуды.

Холинергические и адренергические нейроны обнаружены и в центральной нервной системе.

Рецепторы, взаимодействующие с ацетилхолином, называют холинорецепторами, взаимодействующие с норадреналином –адренорецепторами. Медиатор изменяет структуру молекулы белка рецептора; что приводит к повышению проницаемости постсинаптической мембраны, изменению движения через нее ионов. Вследствие этого в постсинаптической мембране возникает деполяризация или гиперполяризация. Если происходит деполяризация постсинаптической мембраны и этот процесс достигает достаточного (критического) уровня, возбуждение передается на эффекторную клетку. Если же в результате взаимодействия медиатора с рецептором возникает процесс гиперполяризации постсинаптической мембраны, передача возбуждения тормозится.

После того как медиатор передал возбуждение, он разрушается специфическим ферментом.

Этот принцип изучен И. М. Сеченовым, Шеррингтоном, П. К. Анохиным и рядом других исследователей. При рефлекторном сокращении скелетных мышц возбуждаются проприорецепторы. От проприорецепторов нервные импульсы вновь поступают в центральную нервную систему. Этим контролируется точность совершаемых движений. Подобные афферентные импульсы, возникающие в организме в результате рефлекторной деятельности органов и тканей (эффекторов), получили название вторичных афферентных импульсов или «обратной связи».






Дата добавления: 2016-06-05; просмотров: 8355; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.058 сек.