Свободные колебания автомобиля


Свободными называются колебания, совершаемые автомоби­лем на дороге с ровной поверхностью после проезда неровностей.

Для изучения свободных колебаний автомобиля в продольной вертикальной плоскости его подрессоренную массу заменим тре­мя приведенными массами, которые соединены между собой не­весомым жестким стержнем. При этом не будем учитывать влия­ния затухания (амортизаторов) и неподрессоренных масс (мос­тов, колес). Колебательная система автомобиля, соответствующая принятым допущениям, приведена на рис. 13.5.

В указанной колебательной системе М1, М2и М3приведен­ные подрессоренные массы. М1и М2расположены на расстояниях l1и l2 от центра тяжести кузова ав­томобиля, а M3 – в центре тяжес­ти; с1 и с2 — приведенные жесткос­ти передней и задней подвесок.

Для того чтобы эта трехмассовая колебательная система соответ­ствовала в динамическом отноше­нии действительной системе, необ­ходимо выполнение следующих ус­ловий:

Рис. 13.5. Колебательная система авто­мобиля без затухания и неподрессорен­ных масс:

а — подвеска подрессоренной массы (ку­зова); б — схема системы; ЦТ — центр тя­жести


• сумма всех трех масс должна быть равна подрессоренной мас­се автомобиля (М1 + М2 + М3 = М);

• центр тяжести трехмассовой колебательной системы должен
совпадать с центром тяжести подрессоренной массы автомобиля
(М1l1 = М2l2);

• моменты инерции трехмассовой колебательной системы и
подрессоренной массы автомобиля относительно поперечной оси
у, проходящей через центр тяжести, должны быть равны (М1l1 +
+ М2l2 = Mρу2,= J);где ρу — радиус инерции подрессоренной массы
автомобиля относительно поперечной оси у, проходящей через
центр тяжести.

Решим совместно указанные выше уравнения и определим зна­чения приведенных масс М1, М2и М3.

С этой целью поочередно подставим значения М1и М2из вто­рого уравнения в третье и найдем массы М1и М2. Затем найден­ные значения М1и М2подставим в первое уравнение и определим массу М3.

В результате получим значения приведенных масс:

Отношение называется коэффициентом распределе-

ния подрессоренных масс автомобиля. Он определяет наличие связи

между колебаниями передней и задней частей кузова автомобиля. Так, при εу = 1 связь между колебаниями передней и задней час­тей кузова отсутствует.

Свободные колебания подрессоренной массы автомобиля можно описать следующей системой уравнений:

Разделив уравнения соответственно на М1и М2,получим

или


где и — коэффициенты связи между колебани-

ями передней и задней частей кузова; и — пар-

циальные, или частные, частоты свободных колебаний.



Дата добавления: 2021-12-14; просмотров: 295;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.