РАСПРОСТРАНЕНИЕ СВЕТА В ВЕЩЕСТВЕ. ПОЛЯРИЗАЦИЯ СВЕТА
Дисперсия света
Одним из результатов взаимодействия света с веществом является дисперсия.
Дисперсией света называется зависимость показателя преломления n вещества от частоты v (длины волны l) света или зависимость фазовой скорости v световых волн от его частоты n. Дисперсия света представляется в виде зависимости
Следствие дисперсии света — разложение в спектр пучка белого света при прохождении сквозь призму. Изучение этого спектра привело И. Ньютона (1672 г) к открытию.
Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму. Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.
Свет, проходя через трехгранную призму, преломляется и при выходе из призмы отклоняется от своего первоначального направления к основанию призмы. Величина отклонения луча зависит от показателя преломления вещества призмы, и, как показывают опыты, показатель преломления зависит от частоты света.
Рис.4.1.1
При выходе из призмы белый свет разлагается на семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Меньше всех отклоняется красный свет, больше - фиолетовый. Это говорит о том, что стекло имеет для фиолетового света наибольший показатель преломления, а для красного - наименьший. Свет с разными длинами волн распространяется в среде с разными скоростями: фиолетовый с наименьшей, красный - наибольшей, так как n= c/v ,
В результате прохождения света через прозрачную призму получается упорядоченное расположение монохроматических электромагнитных волн оптического диапазона - спектр.
Ньютон на пути солнечного луча поставил красное стекло, за которым получил монохроматический свет (красный), далее призму и наблюдал на экране только красное пятно от луча света (опыт по прохождению монохроматического света через призму – Рис.4.1.2):
Опыт по синтезу (получению) белого света:
Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия.
Рис.4.1.2
Выводы Ньютона:
- призма не меняет свет, а только разлагает его на составляющие;
- световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные.
Красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый - наименьшую, поэтому призма и разлагает свет. Зависимость показателя преломления света от его цвета называется дисперсией.
Цвет луча света определяется его частотой колебаний. При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной.
Границы диапазонов белого света и его составляющих принято характеризовать их длинами волн в вакууме.
Белый свет – это совокупность волн длинами от 380 до 760 нм.
Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п. под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j. При этом
Рис.4.1.3
т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.
Угол отклонения лучей призмой зависит от величины n–1, а n — функция длины волны, поэтому лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.
Различия в дифракционном и призматическом спектрах
1. Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость n=f(l)
2 Составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается. Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.
Величина , называемая дисперсией вещества, показывает, как быстро изменяется показатель преломления с частотой (длиной) волны.
а б
Рис.4.1.4
Дисперсия света называется нормальной, если показатель преломления монотонно убывает с увеличением длины волны (возрастает с увеличением частоты).
. В случае, если дисперсия света называется аномальной.
Отличие нормальной дисперсии от аномальной заключается в следующем. Нормальная дисперсия происходит с лучами света, длина волны которых далека от области поглощения волн данным веществом. Аномальная дисперсия наблюдается только в области поглощения.
Где можно наблюдать явление дисперсии?
- при прохождении света через призму; преломление света в водяных каплях, например, на траве или в атмосфере при образовании радуги; вокруг фонарей в тумане и др.
Как объяснить цвет любого предмета?
- белая бумага отражает все падающие на нее лучи различных цветов;
- красный предмет отражает только лучи красного цвета, а лучи остальных цветов поглощает;
- глаз воспринимает отраженные от предмета лучи определенной длины волны и таким образом воспринимает цвет предмета.
2. Поглощение (абсорбция) света. Рассеяние света
Свет поглощается в тех случаях, когда проходящая волна затрачивает энергию на различные процессы. Среди них: преобразование энергии волны во внутреннюю энергию – при нагревании вещества, затраты энергии на вторичное излучение в другом диапазоне частот (фотолюминесценция), затраты энергии на ионизацию – при фотохимических реакциях и т.п. При поглощении света колебания затухают и амплитуда электрической составляющей уменьшается по мере распространения волны.
Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.
В результате поглощения интенсивность света при прохождении через вещество уменьшается.
Поглощение света в веществе описывается законом Бугера-Ламберта:
где I0 и I — интенсивности плоской монохроматической световой волны на входе I0 и выходе I слоя поглощающего вещества толщиной х, a —коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. Коэффициент поглощения – физическая величина, численно равная обратному значению толщины слоя вещества, в котором интенсивность волны убывает в «е» раз.
Зависимость коэффициента поглощения от длины волны определяет спектр поглощения материала. В веществе (например в газе) может присутствовать несколько сортов частиц, участвующих в колебаниях под действием распространяющейся электромагнитной волны. Если эти частицы слабо взаимодействуют, то коэффициент поглощения мал для широкого спектра частот, и лишь в узких областях он резко возрастает (рис. 4.2.1, а).
а б
Рис.4.2.1
Эти области соответствуют частотам собственных колебаний оптических электронов в атомах разных видов. Спектр поглощения таких веществ линейчатый и представляет собою темные полосы на радужной окраске спектра, если это видимая область. При увеличении давления газа полосы поглощения уширяются. В жидком состоянии они сливаются, и спектр поглощения принимает вид, показанный на рис. 4.2.1б. Причиной уширения является усиление связи атомов (молекул) в среде.
Коэффициент поглощения, зависящий от длины волны λ (или частоты ω), для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения, и лишь для очень узких спектральных областей наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения.
Коэффициент поглощения для диэлектриков невелик, однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда α резко возрастает и наблюдаются сравнительно широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.
Коэффициент поглощения для металлов имеет большие значения, и поэтому металлы практически непрозрачны для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.
На рис. 4.2.2 представлена типичная зависимость коэффициента поглощения α от частоты света ν и зависимость показателя преломления n от ν в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с увеличением ν). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.
Рис.4.2.2
Зависимостью коэффициента поглощения от частоты (длины волны) объясняется окрашенность поглощающих тел.
Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным.
Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей; пленки из пластмасс, содержащие красители; растворы красителей и т.д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.
Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, с помощью наблюдений спектра Солнца был открыт гелий.
Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаютсялинии поглощения,впервые описанные в 1814 году И. Фраунгофером.
С помощью спектрального анализа узнали, что звезды состоят из тех же самых элементов, которые имеются и на Земле.
Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.
Рис.4.2.3
Для газообразных веществ наблюдаются линии поглощения. Для прозрачных твердых и жидких веществ наблюдаются полосы поглощения.
Рассеяние света - процесс преобразования света веществом, сопровождающийся изменением направления распространения света и появлением несобственного свечения вещества. Рассеяние наблюдается как в мутных, так и в чистых средах. Если среда содержит неоднородности, то наблюдается рассеяние света. Рассеянием света называется перераспределение световой энергии по направлениям. Характер рассеяния зависит от соотношения между размером неоднородностей а и длиной волны λ. Если а >> λ, то наблюдается геометрическое рассеяние. Если а ~ λ, то наблюдается дифракционная картина. Интенсивность рассеянного света обратно пропорциональна квадрату длины волны. Если а << λ, то выполняется закон Рэлея: интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны. При этом рассеянный свет оказывается поляризованным
Дата добавления: 2017-11-21; просмотров: 3718;