Возведение мансардных этажей с каркасом из металлоконструкций
Использование металлоконструкций в мансардном строительстве нашло наибольшее распространение вследствие универсальности и гибкости конструктивно-технологических решений. Это позволяет осуществлять производство работ укрупненными блоками, плоскими элементами, а также вручную из отдельных узлов и деталей с последующим сварным или болтовым соединением.
Технологический эффект зависит от степени укрупнения элементов, технологичности конструктивных решений узлов и сопряжений, организационно-технологического уровня производства работ, степени механизации и других факторов. Переход от поэлементной сборки к монтажу плоскими и объемными блоками дает скачкообразное сокращение не только трудозатрат, но и продолжительности ведения работ.
Области применения таких решений достаточно многообразны и позволяют осуществлять надстройку мансардных этажей жилых зданий различных конструктивных схем и периодов постройки.
Реальное применение технологий чаще всего диктуется условиями строительной площадки, уровнем ее стесненности, возможностью использования грузоподъемных средств, а также экономическими факторами.
На рис. 10.26 приведены технологические схемы производства работ при возведении несущего каркаса мансардных этажей с различной степенью укрупнения и данные об изменении удельной трудоемкости монтажных процессов. С увеличением степени укрупнения достигается 5-10-кратное снижение трудоемкости работ.
Рис . 10.26. Технологические схемы производства работ при возведении несущего каркаса мансардных этажей с различной степенью укрупнения
а , б - поэлементный монтаж; в , г - укрупненными плоскими элементами; д , е - объемными блоками; ж - изменение удельной трудоемкости возведения каркасов от степени укрупнения. Цифрами показана технологическая последовательность установки элементов мансардного этажа
В то же время любое увеличение массы монтажных элементов требует применения соответствующих средств механизации: башенных и самоходных пневмоколесных кранов, приставных подъемников, лебедок, легких крышевых кранов и т.п.
При выполнении цикла монтажных работ применяют оснастку для временного крепления (подкосы, кондукторы, фиксаторы), а также средства подмащивания (площадки, передвижные подмости, лестницы и т.п.). Как правило, для соединения конструктивных элементов используются болтовые сочленения. Они весьма универсальны и позволяют с достаточной степенью точности осуществлять сборку конструктивных элементов. После окончательной выверки узлы с болтовыми соединениями свариваются.
При выполнении монтажного цикла особое место отводится безопасным методам ведения работ. Это обстоятельство исключительно важно при осуществлении надстройки мансардных этажей без отселения жильцов. До начала производства работ осуществляют установку защитных козырьков над входами, консольных подмостей по периметру здания. При подъеме и перемещении по кровельной части используются дополнительные устройства, обеспечивающие плавное опускание конструктивных элементов, и специальные настилы для их перемещения.
Наибольшее распространение получила технология надстройки мансардных этажей с поэлементным монтажом несущих металлоконструкций.
Основным преимуществом технологии является ручная сборка элементов каркаса с подачей на монтажный горизонт с помощью приставных грузопассажирских подъемников грузоподъемностью до 1,0 т.
Конструктивная схема мансардного этажа выполняется в виде одно-двухпролетных рам, размещаемых на обвязочном поясе, объединенных системой прогонов и обрешетки. Использование гнутых профилей, а также бесчердачного покрытия позволяет снизить удельный расход металла до 30-35 кг/м2 надстраиваемой площади.
В качестве теплоизоляции используются минераловатные плиты плотностью 30-40 кг/м3, размещаемые в стеновом ограждении и покрытии, с устройством ветрозащитных пленок и облицовкой с внутренней стороны двумя слоями гипсокартона.
Наклонная система рам требует использования оконных заполнений системы «Велюкс», в том числе в кровельной части мансардного этажа.
Производство работ осуществляется без отселения жильцов с обеспечением мер безопасности работающих и жильцов.
На рис. 10.27 приведены конструктивно-технологические схемы, иллюстрирующие основные технологические этапы производства работ.
Рис . 10.27. Конструктивно-технологическая схема надстройки мансардного этажа с несущими конструкциями из металлических рам
а - фасады здания; б - план мансардного этажа; в - схема размещения несущих конструкций; г , в - поперечные разрезы
Первые пионерные проекты были выполнены в гг. Сургуте, Санкт-Петербурге и др.
Развитием строительства мансардных этажей с несущими конструкциями из металла явились унифицированные технологические решения конструкций мансардных этажей применительно к реконструкции домов массовых серий 1-464, 1-468, I-447, 1-335.
Основой конструктивного решения являются поперечные двухпролетные рамы, которые опираются на несущие конструкции существующей части надстраиваемого здания, объединенные монолитным поясом.
Конструктивные элементы рамы-стойки и ригели выполнены из замкнутого металлического профиля сечением 160 ´ 160 мм с толщиной стенки 5 мм.
Продольный шаг рам варьируется в пределах 2,6-3,2 м в зависимости от конструктивной схемы каждой серии. Для домов с поперечными несущими стенами (1-464, 1-468, 1-335) рамы располагаются по их осям. В серии 1-468 со смешанным шагом поперечных несущих стен при шаге 6,0 м устанавливается промежуточная рама с опиранием на продольные прогоны. В домах с кирпичными стенами (I-447) рамы располагаются с шагом 2,8 м, который является кратным по отношению к расстоянию между стенами лестничных клеток и межсекционных стен.
Разработаны одно- и двухъярусные (двухэтажные) мансардные надстройки треугольного или ломаного поперечного сечения (рис. 10.28). В качестве оконных заполнителей применяют наклонные системы конструкции фирмы «Велюкс» или оконные блоки вертикального расположения.
Рис . 10.28. Конструктивно-технологические схемы надстройки мансардных этажей с использованием металлических рам
а б - одноуровневые треугольные и ломаного очертания; в , г - двухуровневые ломаного очертания с наклонными и вертикальными оконными блоками; 1 - обвязочный монолитный пояс; 2 ,3 - наружные и внутренние стоики рам; 4 - ригели рам; 5 - прогон из досок; 6 - стропила с обрешеткой; 7 - кровельное покрытие; 8 - оконное заполнение
Пространственная жесткость конструкций мансардных этажей обеспечивается в поперечном направлении жесткостью рам, а в продольном направлении - наличием стен лестничных клеток, продольных связей в виде ригелей, а также введением дополнительных элементов жесткости в виде раскосов в стенах и в уровне чердачного перекрытия.
Междуэтажные и чердачные перекрытия выполняются по деревянным прогонам, расположенным с шагом не более 600 мм и опирающимся на стальные ригели рам с подшивным потолком из двух листов гипсокартона. Листы гипсокартона крепятся на самонарезающихся винтах к металлическим скобам, закрепленным на нижней грани деревянных прогонов. Поверх листов закрепляется металлическая сетка, на которую укладывается минераловатная плита утеплителя толщиной 100 мм в междуэтажных перекрытиях и толщиной 250 мм по слою пароизоляции в чердачных перекрытиях.
В междуэтажных перекрытиях по верху деревянных прогонов укладываются упругие прокладки, по которым размещается конструкция чистого пола.
В чердачном перекрытии по утеплителю укладываются ходовые мостики.
Наружное ограждение или покрытие устанавливается на крайние стойки поперечных рам. Оно включает внешнюю и внутреннюю облицовки и утеплитель. Внешняя облицовка выполняется из металлочерепицы или гофрированного металлического листа, который размещается по обрешетке.
Внутренняя облицовка состоит из двух листов гипсокартона, которые крепятся к вертикальным стойкам из тонколистового металла системы ТИГИ Кнауф.
Утеплителем стен является минераловатная плита ( l = 0,04 Вт/м °С) толщиной 200 мм. С внутренней стороны утеплителя предусмотрена пароизоляция в виде пленки толщиной 0,2 мм.
Стены лестничных клеток и межквартирных перегородок возводятся из мелкоштучных материалов.
Над мансардным этажом предусматривается холодное чердачное помещение с покрытием по наклонным деревянным стропилам.
Внутренние межкомнатные перегородки выполняются из гипсокартонных плит по металлическому каркасу.
Помещения санитарно-технических узлов облицовываются гидроизоляционным покрытием.
Рис . 10.29. Технологическая последовательность производства работ по надстройке мансардного этажа
1 - устройство монолитного обвязочного пояса; 2 - возведение стен лестничной клетки; 3 - монтаж стоек рам; 4 , 5 - установка ригелей и балок; 6 - устройство прогонов; 7 - установка стропил и устройство обрешетки; 8 - установка оконных блоков; 9 - устройство обрешетки; 10 - устройство кровельного покрытия
Технологическая последовательность производства работ приведена на рис. 10.29 и включает следующие этапы:
1 - устройство обвязочного пояса по периметру наружных стен и лестничных клеток.
При наличии плоской кровли эти работы выполняются без разборки кровельного покрытия. При скатной кровле необходимо обеспечить гидроизоляцию перекрытия верхнего этажа, затем осуществить частичную или полную разборку кровельной части;
2 - возведение стен лестничных клеток осуществляется после устройства монолитного пояса и может быть совмещено с работами по монтажу элементов рам;
3 - монтаж рамного каркаса мансарды осуществляется из отдельных элементов на болтовых соединениях или после укрупнения в плоские рамы с установкой в проектное положение методом поворота.
При монтаже каркаса используется система подкосов, струбцин, лебедок и других приспособлений, обеспечивающих выверку и проектное закрепление конструкций;
4 - установка балочных соединений рам, обеспечивающих пространственную жесткость конструкции;
5 - установка стопил с обрешеткой и монтаж кровельного покрытия. Выполнение данного вида работ создает благоприятные условия для выполнения работ по утеплению и устройству стенового ограждения, перекрытий и для производства работ по внутренней планировке помещений;
6 - цикл сантехнических, электромонтажных и специальных видов работ выполняется до или параллельно отделочным;
7 - по мере выполнения работ по надстройке мансардного этажа осуществляются утепление стен и замена оконных блоков.
Надстройка мансардных этажей с применением складывающихся объемных блоков
Повышение уровня общей и транспортной технологичности связано с созданием складывающихся объемных блоков, которые на период перевозки занимают горизонтальное положение составных частей. Такое решение позволяет более рационально использовать грузоподъемность транспортных средств, а возможность быстрого приведения в проектное состояние позволяет интенсифицировать процессы надстройки зданий.
При разработке мобильных мансардных блоков основное внимание уделено созданию конструкции, которая обеспечивает изменение геометрических параметров. В основу конструктивного решения заложен принцип шарнирного соединения плоских элементов блока, обеспечивающий снижение в 4-5 раз транспортных габаритов по высоте. Не менее важным условием явилась разработка соединений, легко трансформируемых из шарнирных в жесткие узлы, с обеспечением требуемых пространственной жесткости и устойчивости. Конструкция должна легко переводиться из транспортного (сложенного) состояния в монтажное в виде объемного блока.
На рис. 10.30 приведены принципиальные схемы складывающихся объемных блоков для надстройки мансардных этажей. Конструктивно блоки состоят из стеновых элементов (1), плит перекрытия (2), чердачных перекрытий (3), панелей кровли (4), шарниров (5), дополнительных связей (6), временных стоек, или опор (7). Шарнирное соединение стеновой панели позволяет изменить угол наклона в пределах до 30°.
Рис . 10.30. Конструктивные схемы складывающихся объемных блоков на один или два этажа
а , б - полублоки с шарнирными связями в рабочем и а' , б' - в транспортном положении; в , г - элементы блоков при 2-ярусной надстройке; д - транспортное положение; е - общий вид укрупненного мансардного блока на период формирования кровельной части; 1 - стеновая панель; 2 , 3 - панели перекрытия; 4 - кровельная панель; 5 - шарнирные связи; 6 - оконный блок; 7 - монтажная стойка; lтр - длина блока в транспортном положении; Нтр - то же, толщина пакета блока
С использованием объемных блоков возможна реконструкция различных серий малоэтажных жилых зданий как ранней, так и поздней постройки. Основное преимущество данной технологии состоит в возможности создания пространственных объемов, что дает реальные предпосылки для реализации гибкой планировки помещений надстраиваемых этажей.
На рис. 10.31 приведен вариант одно- и двухъярусных складывающихся объемных блоков треугольной формы, выполненных на пролет здания. Конструкция блоков основана на шарнирном соединении плоских элементов системы: кровельно-стеновых, плит перекрытия и покрытия. В транспортном положении они представляют собой пакеты из горизонтальных элементов. В зависимости от угла наклона кровельной части подбирается определенная крутизна, обеспечивающая более комфортное расположение помещений. Для данного типа объемных блоков наиболее рациональным является применение оконных заполнений системы «Велюкс».
Рис . 10.31. Конструктивные схемы одно- (А) и двухъярусных (Б) складывающихся объемных блоков мансардных этажей
а - общая схема; б - транспортное состояние; в - проектное положение; 1 - шарниры; 2 - временные стойки; 3 - кровельное покрытие
Ширина блоков принимается равной шагу расположения внутренних стеновых панелей для крупнопанельных и шагу оконных проемов для кирпичных зданий и составляет 2,6-3,2 м.
Мансардные блоки изготавливаются в заводских условиях размером на полупролет здания с возможностью их болтового соединения на уровне перекрытия, коньковой части и в опорной зоне стоек. Конструкция блоков предусматривает получение стеновых элементов в виде многослойной утепленной системы с облицовкой изнутри гипсокартонными плитами, а с наружной части - в виде кровельного покрытия из мелкоштучных металлических элементов, металлочерепицы по обрешетке из бруса или защитного слоя из бетона толщиной 25-30 мм. Элементы перекрытия выполняются из несущих металлических балочных элементов, объединенных системой раскосов. Для обеспечения теплотехнических и механических характеристик потолочные элементы перекрытия выполняются из тонкостенной монолитной плиты, на поверхности которых размещается утеплитель в виде минераловатных плит. Поверхность утеплителя закрывается полимерной пленкой или плоскими элементами. Для исключения мостиков холода выступающие поверхности балочных элементов закрываются коробчатыми утепленными элементами.
Повышение эксплуатационной надежности перекрытия достигается в результате перехода от штучных материалов к заливочным. Так, заполнение элементов перекрытия полистирол-бетонной или пенобетонной смесью с небольшим сетчатым армированием обеспечивает получение конструкции с заданными прочностными и теплотехническими характеристиками.
Возможно изготовление комбинированных систем, состоящих из плит перекрытия из тяжелого бетона толщиной 6-8 см с последующим утеплением засыпочным или минераловатным утеплителем.
Стеновые элементы снабжаются оконными коробками, которые крепятся в проектное положение с помощью специальных соединений. Их положение сочетается с элементами кровельного покрытия, что обеспечивает водонепроницаемость стыков и водоотвод атмосферных осадков.
Панель кровельного покрытия выполняется в виде плоской замкнутой рамы. По ее поверхности устраиваются обрешетка из бруса и кровельное покрытие. Соединение элементов кровельного покрытия и стеновой панели выполняется таким образом, чтобы в проектном положении достигалась герметичность кровли. Стык между элементами кровли закрывается нащельником, что обеспечивает его водонепроницаемость.
Дата добавления: 2021-09-07; просмотров: 439;