Преобразования Галилея. Механический принцип относительности

В классической механике справедлив механически принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета.

Для его доказательства рассмотрим две системы отсчета: инерциальную систему К (с координатами х, у, z), которую условно будем считать неподвижной, и систему К' (с координатами , движущуюся относительно АГ равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени I расположение этих систем друг относительно друга имеет вид, изображенный на рис. 58. Скорость а направлена вдоль ОО', радиус-вектор, проведенный из О в О', r0=ur.

Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что

(34.1)

Уравнение (34.1) можно записать в проекциях на оси координат:

(342)

Уравнения (34.1) и (342) носят название преобразований координат Галилея.

В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид

 

В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение:

 

(34.3)

Записанные соотношения справедливы лишь в случае классической механики (и«с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца* $ 36).

Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение

(34.4)

которое представляет собой правило сложения скоростей в классической механике.

Ускорение в системе отсчета К

 

 

Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково:

а = а'. (34.5)

Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инициальной (точка движется относительно нее равномерно и прямолинейно или покоится).

Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной

*Х. Лоренц (1853—1928) — нидерландский физик-теоретик.

Рис. 58

• В чем физическая сущность механического принципа относительности?

• В чем заключается правило сложения скоростей в классической механике?

• Каковы причины возникновения специаль ной теории относительности?

системы отсчета к другой не изменяются, т. с. являются инвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

 

 

§ 35. Постулаты специальной (частной) теории относительности

Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (««с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным л»*"*"", в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Бели источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скорости их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Б. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) — опыт Майкельсова — Морли , применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показывали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.

Одновременно было показано противоречие между классической теорией и уравнениями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в основе понимания света как электромагнитной волны.

Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (««с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.

Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятевистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами.

В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы

отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, являясь тем самым обоснованием постулатов Эйнштейна — обоснованием специальной теории относительности.

§ 36. Преобразования Лоренца

Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразованиями, удовлетворяющими постулатам теории относительности.

Для иллюстрации этого вывода рассмотрим две инерциальные системы отсчета: К (с координатами х, у, z) и К' (с координатами ), движущуюся относительно К (вдоль оси х) со скоростью v=const (рис. 59). Пусть в начальный момент времени t=t'=0, когда, начала координат О я. О' совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна, скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние

(36.1)

то в системе К' координата светового импульса в момент достижения точки А

 

(36.2)

где t' — время прохождения светового импульса от начала координат до точки A в системе К'. Вычитая (36.1) из (36.2), получаем

Так как (система К' перемещается по отношению к системе K), то

 

т. е. отсчет времени в системах К и К' различен — отсчет времени имеет относительный характер (в классической физике считается, что время во всех инерциальных системах отсчета течет одинаково, т. е. t=t').

Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой:

 

заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна (формулы представлены для случая, когда К' движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцем в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла (см. § 139) инвариантны.

Преобразована Лоренца имеют вид

(36.3)

 

 

Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком ори v. Это очевидно, так как если скорость движения системы К' относительно системы К равна v, то скорость движения К относительно К' равна —1).

Из преобразований Лоренца вытекает также, что при малых скоростях (по сравнению со скоростью с), т. е. когда , они переходят в классические преобразования Галилея (в этом заключается суть принципа соответствия), которые являются, следовательно, предельным случаем преобразований Лоренца. При v>c выражения (36.3) для x, t, t' , x' теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости распространения света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразований Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преобразования (см. (36.3)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время.

Рис. 59

• В чем заключаются основные постулаты специальной теории относительности?

• Зависит ли от скорости движения системы отсчета скорость тела? скорость света?

• Запишите и прокомментируйте преобразования Лоренца. При каких условиях они переходят в преобразования Галилея?

71

§ 37. Следствия из преобразований Лоренца

1. Одновременность событий в резвых системах отсчета. Пусть в системе К в точках с координатами х1 и х2 в моменты времени t1 и t2 происходят два события. В системе К' им соответствуют координаты х'1 и х'2 и моменты времени t'1, и t'2 Если события в системе К происходят в одной точке (x1=x2) и являются одновременными (t1 = t2), то, согласно преобразованиям Лоренца (36.3),

 

т. е. эти события являются одновременными и пространственно совпадающими для любой инерииальной системы отсчета.

Екая события в системе К пространственно разобщены ( , но одновременны

(t1 = t2), то в системе К' , согласно преобразованиям Лоренца (36.3),

 

 

 

 

Таким образом, в системе К' эти события, оставаясь пространственно разобщенными,

оказываются и неодновременными. Знак разности определяется знаком выражения v (x1-x2), поэтому в различных точках системы отсчета К' (при разных v) разность

будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) , где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'

(37.1)

причем началу и концу события,

 

(37.2)

Подставляя (372) в (37.1), получаем

 

или

(37.3)

Из соотношения (37.3) вытекает, что , т. е. длительность события,

происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени 1, отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала т, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерииальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» я «движущаяся» системы соотношения для и 1 обратимы. Из (37.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости распространения света в вакууме.

В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществляется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земля доходит за 500 лет),

со скоростью, близкой к скорости света ( =0,001). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонавта в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю в 1 раз более молодым, чем его брат-близнец, оставшийся на Земле. Это явление, получившее название парадокса близнецов, в действительности парадокса не содержит. Дело в том, что принцип относительности утверждает равноправность не всяких систем отсчета, а только инициальных. Неправильность рассуждения состоит в том, что системы отсчета, связанные с близнецами, не эквивалентны: земная система инерциальна, а корабельная — неинерциальна, поэтому к ним принцип относительности неприменим.

Релятивистский эффект замедления хода часов является совершенно .реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с -мезонами. Среднее время жизни покоящихся я-мезонов (по часам, движущимся вместе с ними) т 2,2'10~8 с. Следовательно, -мезоиы, образующиеся в верхних слоях атмосферы (на высоте 30 км) и движущиеся со скоростью, близкой к скорости с, должны были бы проходить расстояния с 6,6 м, т. е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни -м езона , а путь этих частиц в атмосфере . Так как , то .

3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х1 и покоящийся относительно системы К'. Длина стержня в системе К' будет (l0=x2-x1 где x1 и x2 — не изменяющиеся со временем г' координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты его концов х1 и х2 в системе

К в один и тот же момент времени t. Их разность l=х2—х1 и определяет длину стержня в системе К. Используя преобразования Лоренца (36.3), получим

 

 

т.е

 

 

(37-4)

Таким образом, длина стержня, измеренная в системе, относительно которой он

движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (37.4).

Из выражения (37.4) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т. е. так называемое лоренцевым сокращением длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (36.3) следует, что

И

т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.

4. Релятивистский закон сложена скоростей. Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами а в системе К' в момент времени (' — координатами то

 

и

 

представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем К и К'. Согласно преобразованиям Лоренца (36.3),

 

 

Произведя соответствующие преобразования, получаем релятевистский закон сложения скоростей специальной теории относительности:

 

 

Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с uх, а скорость u1 относительно К' — сu'х. Тогда закон сложения

скоростей примет вид

 

(37.6)

 

Легко убедиться в том, что если скорости v, u' ни малы по сравнению со скоростью с, то формулы (37.5) и (37.6) переходят в закон сложения скоростей в классической

механике (см. (34.4)). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью распространения света в вакууме) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.

Релятивистский закон сложения скоростей подчиняется второму постулату Эйнш-

с+ютеина (см. § 35). Действительно, если u/=с, то формула (37.6) примет вид

(аналогично можно показать, что при u=с скорость u/ также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна.

Докажем также, что если складываемые скорости сколь угодно близки к скорости с, то их результирующая скорость всегда меньше или равна с. В качестве примера рассмотрим предельный случай u/=v=с. После подстановки в формулу (37.6) получим u=с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равная с/n (n — абсолютный показатель преломления среды), предельной величиной не является (подробнее см. § 189).

§ 38. Интервал между событиями

Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разное. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной физической величины, не зависящей от системы отсчета, т. е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами (х, у, z, t), такой физической величиной является интервал между двумя событиями:

(38.1)

где — расстояние между точками трехмерного

пространства, в которых эти события произошли. Введя обозначение получим

 

Покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив выражение (38.1) можно записать в виде

 

• Какой вывод о пространстве и времени можно сделать на основе преобразований Лоренц • При какой скорости движения релятивистс-но - кое сокращение длины движущегося телача? составит 25%?

• Одновременны ли события • системе К1, если • В чем состоит «парадокс близнецов» и какв системе К они происходят в одной точке его разрешить?

и одновременны? в системе К события раэоб- • В чем заключается релятивистский закон

щены, но одновременны? Обосновать ответ. сложения скоростей? Как показать, что он

•Какие следствия вытекают из специальной находится в согласии с постулатами Эйнш теории относительности для размеров тел теина?

и длительности событий в разных системах отсчета? Обосновать ответ.

 

Интервал между теми же событиями в системе К' равен

(38-2)

Согласно преобразованиям Лоренца (36.3),

 

Подставив эти значения в (38.2), после элементарных преобразований получим, что

 

Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.

Теория относительности, таким образом, сформулировала новое представление о пространстве и времени. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея — Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи — пространство-время. Пространство и время не существуют вне материи и независимо от нее.

Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т. е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

§ 39. Основной закон релятивистской динамики материальной точки

Масса движущихся релятивистских частиц зависит от их скорости:

то

(39.1)

где mо — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в вакууме; m — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Из принципа относительности Эйнштейна (см. § 35), утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона

 

 

 

оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса. Основной закон релятивистской динамики материальной точки имеет вид

 

(39,2)

или

 

 

(39.3)

где

(39,4)

 

— релятивистский импульс материальной точки.

Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньютоновской механики (6.7). Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (39.4). Таким образом, уравнение (39.2) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.

В силу однородности пространства (см. § 9) в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.

Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости с, уравнение (392) переходит в основной закон (см. (6.5)) классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v«с. Законы классической механики получаются как следствие теории относительности для предельного случая v«с (формально переход осуществляется при с ). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).

Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем (см. § 116) будет показано, что на основании этой зависимости производятся расчеты ускорителей.

 

§ 40. Закон взаимосвязи массы и энергии

Найдем кинетическую энергию релятивистской частицы. Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:

или (40.1)

Учитывая, что dr=vdt подставив в (40.1) выражение (39.2), получаем

 

Преобразовав данное выражение с учетом того, что vdv= , и формулы (39.1), придем к выражению

 

(40.2)

т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.

Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя то, то, проинтегрировав (40.2), получим

(40.3)

или кинетическая энергия релятивистской частицы имеет вид

(40.4)

Выражение (40.4) при скоростях переходит в классическое:

 

(разлагая в ряд ) при , правомерно пренебречь членами второго порядка малости).

А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы dm сопровождается изменением полной энергии частицы,

(40.5)

Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:

(40.6)

Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — закон взаимосвязи (пропорциональности) массы и энергии полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле. Закон (40.6) можно, учитывая выражение (40.3), записать в виде

 

откуда следует, что покоящееся тело (T=0) также обладает энергией

 

называемой энергией покоя. В классической механике энергия покоя Е0 не учитывается,

считая, что при =0 энергия покоящегося тела равна нулю.

В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы:

(40,7)

 

Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо хо всем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса

(40.8)

и, наоборот, со всякой массой связана энергия (40.6).

Чтобы охарактеризовать прочность связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия всей системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы

(40.9)

(-1

где m0i — масса покоя i-й частицы в свободном состоянии; М0 — масса покоя системы, состоящей из n частиц.

Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.

Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.

Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.

Задачи

7.1.

<== предыдущая лекция | следующая лекция ==>
Извлечение грунта земснарядами | Выправление рек. Классификация и назначение выправительных сооружений

Дата добавления: 2017-06-13; просмотров: 2115;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.104 сек.