Дешифраторы и шифраторы
Комбинационные микросхемы
В лекции рассказывается о комбинационных микросхемах: шифраторах, дешифраторах, мультиплексорах и компараторах кодов, об их алгоритмах работы, параметрах, типовых схемах включения, а также о реализации на их основе некоторых часто встречающихся функций.
Комбинационные микросхемы выполняют более сложные функции, чем простые логические элементы. Их входы объединены в функциональные группы и не являются полностью взаимозаменяемыми. Например, любые два входа логического элемента И-НЕ совершенно спокойно можно поменять местами, от этого выходной сигнал никак не изменится, а для комбинационных микросхем это невозможно, так как у каждого входа — своя особая функция.
Объединяет комбинационные микросхемы с логическими элементами то, что они не имеют внутренней памяти. То есть уровни их выходных сигналов всегда однозначно определяются текущими уровнями входных сигналов и никак не связаны с предыдущими значениями входных сигналов. Любое изменение входных сигналов обязательно изменяет состояние выходных сигналов. Именно поэтому логические элементы иногда также называют комбинационными микросхемами, в отличие от последовательных (или последовательностных) микросхем, которые имеют внутреннюю память и управляются не уровнями входных сигналов, а их последовательностями.
Строго говоря, все комбинационные микросхемы внутри построены из простейших логических элементов, и эта их внутренняя структура часто приводится в справочниках. Но для разработчика цифровой аппаратуры эта информация обычно лишняя, ему достаточно знать только таблицу истинности, только принцип преобразования входных сигналов в выходные, а также величины задержек между входами и выходами и уровни входных и выходных токов и напряжений. Внутренняя же структура важна для разработчиков микросхем, а также в тех редчайших случаях, когда надо построить новую комбинационную микросхему из микросхем простых логических элементов.
Состав набора комбинационных микросхем, входящих в стандартные серии, был определен исходя из наиболее часто встречающихся задач. Требуемые для этого функции реализованы в комбинационных микросхемах наиболее оптимально, с минимальными задержками и минимальным потреблением мощности. Поэтому пытаться повторить эту уже проделанную однажды работу не стоит. Надо просто уметь грамотно применять то, что имеется.
Дешифраторы и шифраторы
Функции дешифраторов и шифраторов понятны из их названий. Дешифратор преобразует входной двоичный код в унитарный код (номер выходного сигнала) (дешифрирует код), а шифратор преобразует номер входного сигнала в выходной двоичный код (шифрует номер входного сигнала). Количество выходных сигналов дешифратора и входных сигналов шифратора равно количеству возможных состояний двоичного кода (входного кода у дешифратора и выходного кода у шифратора), то есть 2n, где n — разрядность двоичного кода (рис. 5.1). Микросхемы дешифраторов обозначаются на схемах буквами DC (от английского Decoder), а микросхемы шифраторов — CD (от английского Coder).
Рис. 5.1. Функции дешифратора (слева) и шифратора (справа)
На выходе дешифратора всегда присутствует только один сигнал, причем номер этого сигнала однозначно определяется входным кодом. Выходной код шифратора однозначно определяется номером входного сигнала.
В стандартные серии входят дешифраторы на 4 выхода (2 разряда входного кода), на 8 выходов (3 разряда входного кода) и на 16 выходов (4 разряда входного кода). Они обозначаются соответственно как 2–4, 3–8, 4–16. Различаются микросхемы дешифраторов входами управления (разрешения/запрета выходных сигналов), а также типом выхода: 2С или ОК. Выходные сигналы всех дешифраторов имеют отрицательную полярность. Входы, на которые поступает входной код, называют часто адресными входами. Обозначают эти входы 1, 2, 4, 8, где число соответствует весу двоичного кода (1 — младший разряд, 2 — следующий разряд и т.д.), или А0, А1, А2, А5. В отечественных сериях микросхемы дешифраторов обозначаются буквами ИД. На рис. 5.2 показаны три наиболее типичных микросхемы дешифраторов.
Рис. 5.2. Примеры микросхем дешифраторов
Код на входах 1, 2, 4, 8 определяет номер активного выхода (вход 1 соответствует младшему разряду кода, вход 8 — старшему разряду кода). Входы разрешения С1, С2, С3 объединены по функции И и имеют указанную на рисунке полярность. Для примера в табл. 5.1 приведена таблица истинности дешифратора ИД7 (3—8). Существуют и дешифраторы 4–10 (например, ИД6), которые обрабатывают не все возможные 16 состояний входного кода, а только первые 10 из них.
Первые три строки таблицы соответствуют запрету выходных сигналов. Разрешением выхода будет единица на входе С1 и нули на входах С2 и С3. Символ "Х" обозначает безразличное состояние данного входа (неважно, нуль или единица). Нижние восемь строк соответствуют разрешению выходных сигналов. Номер активного выхода (на котором формируется нулевой сигнал) определяется кодом на входах 1, 2, 4, причем вход 1 соответствует младшему разряду кода, а вход 4 — старшему разряду кода.
Таблица 5.1. Таблица истинности дешифратора 3–8 (ИД7) | |||||||||||||
Входы | Выходы | ||||||||||||
C1 | -C2 | -C3 | |||||||||||
X | X | X | X | X | |||||||||
X | X | X | X | X | |||||||||
X | X | X | X | X | |||||||||
Наиболее типичное применение дешифраторов состоит именно в дешифрировании входных кодов, при этом входы С используются как стробирующие, управляющие сигналы. Номер активного (то есть нулевого) выходного сигнала показывает, какой входной код поступил.
Еще одно важное применение дешифраторов состоит в перекоммутации одного входного сигнала на несколько выходов. Или, другими словами, дешифратор в данном случае выступает в качестве демультиплексора входных сигналов, который позволяет разделить входные сигналы, приходящие в разные моменты времени, на одну входную линию (мультиплексированные сигналы). При этом входы 1, 2, 4, 8 дешифратора используются в качестве управляющих, адресных, определяющих, на какой выход переслать пришедший в данный момент входной сигнал (рис. 5.5), а один из входов С выступает в роли входного сигнала, который пересылается на заданный выход. Если у микросхемы имеется несколько стробирующих входов С, то оставшиеся входы С можно использовать в качестве разрешающих работу дешифратора.
Рис. 5.5. Включение дешифратора как демультиплексора
Как и для любых других цифровых микросхем, для дешифраторов наиболее критична ситуация одновременного или почти одновременного изменения входных сигналов. Например, если стробы С постоянно разрешают работу дешифратора, то в момент изменения входного кода на любом выходе дешифратора могут появиться паразитные отрицательные короткие импульсы. Это может быть связано как с неодновременным выставлением разрядов кода (из-за несовершенства микросхем источников кода или из-за разных задержек распространения по линиям связи), так и с внутренними задержками самих микросхем дешифраторов.
Рис. 5.6. Стробирование выходных сигналов дешифратора
Если такие паразитные импульсы нужно исключить, то можно применять синхронизацию с помощью стробирующих сигналов. Используемый для этого сигнал С должен начинаться после текущего изменения кода, а заканчиваться до следующего изменения кода, то есть должен быть реализован вложенный цикл. На рис. 5.6 показано, как будет выглядеть выходной сигнал дешифратора без стробирования и со стробированием.
Рис. 5.7. Позиционная индикация на дешифраторе с выходами ОК
Дешифраторы, имеющие выходы типа ОК (ИД5, ИД10), удобно применять в схемах позиционной индикации на светодиодах. На рис. 5.7 приведен пример такой индикации на микросхеме ИД5, которая представляет собой два дешифратора 2–4 с объединенными входами для подачи кода и стробами, позволяющими легко строить дешифратор 3–8. При этом старший разряд кода выбирает один из дешифраторов 2–4 (нуль соответствует верхнему по схеме дешифратору, а единица — нижнему). То есть в данном случае номер горящего светодиода равен входному коду дешифратора. Такая индикация называется позиционной.
На рис. 5.9 показаны для примера две микросхемы шифраторов ИВ1 и ИВ3. Первая имеет 8 входов и 3 выхода (шифратор 8–3), а вторая — 9 входов и 4 выхода (шифратор 9–4). Все входы шифраторов — инверсные (активные входные сигналы — нулевые). Все выходы тоже инверсные, то есть формируется инверсный код. Микросхема ИВ1, помимо 8 информационных входов и 3 разрядов выходного кода (1, 2, 4), имеет инверсный вход разрешения –ЕI, выход признака прихода любого входного сигнала –GS, а также выход переноса –EO, позволяющий объединять несколько шифраторов для увеличения разрядности.
Рис. 5.9. Микросхемы шифраторов
Стандартное применение шифраторов состоит в сокращении количества сигналов. Например, в случае шифратора ИВ1 информация о восьми входных сигналах сворачивается в три выходных сигнала. Это очень удобно, например, при передаче сигналов на большие расстояния. Правда, входные сигналы не должны приходить одновременно. На рис. 5.10 показаны стандартная схема включения шифратора и временные диаграммы его работы.
Рис. 5.10. Стандартное включение шифратора
Инверсия выходного кода приводит к тому, что при приходе нулевого входного сигнала на выходе формируется не нулевой код, а код 111, то есть 7. Точно так же при приходе, например, третьего входного сигнала на выходе образуется код 100, то есть 4, а при приходе пятого выходного сигнала — код 010, то есть 2.
Мультиплексоры
Мультиплексоры (английское Multiplexer) предназначены для поочередной передачи на один выход одного из нескольких входных сигналов, то есть для их мультиплексирования. Количество мультиплексируемых входов называется количеством каналов мультиплексора, а количество выходов называется числом разрядов мультиплексора. Например, 2-канальный 4-разрядный мультиплексор имеет 4 выхода, на каждый из которых может передаваться один из двух входных сигналов. А 4-канальный 2-разрядный мультиплексор имеет 2 выхода, на каждый из которых может передаваться один из четырех входных сигналов. Число каналов мультиплексоров, входящих в стандартные серии, составляет от 2 до 16, а число разрядов — от 1 до 4, причем чем больше каналов имеет мультиплексор, тем меньше у него разрядов.
Управление работой мультиплексора (выбор номера канала) осуществляется с помощью входного кода адреса. Например, для 4-канального мультиплексора необходим 2-разрядный управляющий (адресный) код, а для 16-канального — 4-разрядный код. Разряды кода обозначаются 1, 2, 4, 8 или А0, А1, А2, А5. Мультиплексоры бывают с выходом 2С и с выходом 3С. Выходы мультиплексоров бывают прямыми и инверсными. Выход 3С позволяет объединять выходы мультиплексоров с выходами других микросхем, а также получать двунаправленные и мультиплексированные линии. Некоторые микросхемы мультиплексоров имеют вход разрешения/запрета С (другое обозначение — S), который при запрете устанавливает прямой выход в нулевой уровень.
На рис. 5.12 показаны для примера несколько микросхем мультиплексоров из состава стандартных серий. В отечественных сериях мультиплексоры имеют код типа микросхемы КП. На схемах микросхемы мультиплексоров обозначаются буквами MS.
Рис. 5.12. Примеры микросхем мультиплексоров
Таблица 5.3. Таблица истинности 8-канального мультиплексора | |||||
Входы | Выходы | ||||
-EZ | Q | -Q | |||
X | X | X | Z | Z | |
D0 | -D0 | ||||
D1 | -D1 | ||||
D2 | -D2 | ||||
D3 | -D3 | ||||
D4 | -D4 | ||||
D5 | -D5 | ||||
D6 | -D6 | ||||
D7 | -D7 |
В табл. 5.3 в качестве примера приведена таблица истинности одноразрядного 8-канального мультиплексора с выходами 3С (КП15).
В таблице сигналы на входах 0...7 обозначены D0...D7, прямой выход — Q, инверсный выход — –Q, Z — третье состояние выхода. При единице на входе –EZ оба выхода находятся в третьем состоянии. При нуле на входе –EZ выходной сигнал на прямом выходе повторяет состояние входного сигнала, номер которого задается входным кодом на входах 1, 2, 4. Сигнал на инверсном выходе противоположен по полярности сигналу на прямом выходе.
На рис. 5.13 приведена временная диаграмма работы 4-канального мультиплексора. В зависимости от входного кода на выход передается один из четырех входных сигналов. При запрещении работы на выходе устанавливается нулевой сигнал вне зависимости от входных сигналов.
Рис. 5.13. Временная диаграмма работы 4-канального мультиплексора с разрешением
Компараторы кодов
Микросхемы компараторов кодов (английское Comparator) применяются для сравнения двух входных кодов и выдачи на выходы сигналов о результатах этого сравнения (о равенстве или неравенстве кодов). На схемах компараторы кодов обозначаются двумя символами равенства: "= =". Код типа микросхемы компаратора кода в отечественных сериях — СП.
Примером такой микросхемы может служить СП1 — 4-х разрядный компаратор кодов, сравнивающий величины кодов и выдающий информацию о том, какой код больше, или о равенстве кодов (рис. 5.16).
Помимо восьми входов для сравниваемых кодов (два 4-х разрядных кода, обозначаемых А0...А3 и В0...В3), компаратор СП1 имеет три управляющих входа для наращивания разрядности (А>B, A<B, A=B) и три выхода результирующих сигналов (А>B, A<B, A=B). Для удобства на схемах управляющие входы и выходы иногда обозначают просто ">", "<" и "=". Нулевые разряды кодов (А0 и В0) — младшие, третьи разряды (А3 и В3) — старшие.
Рис. 5.16. 4-х разрядный компаратор кодов СП1 (два варианта обозначения)
Таблица истинности компаратора кодов (табл. 5.4) кажется на первый взгляд довольно сложной, но на самом деле все просто.
Если используется одиночная микросхема, то для ее правильной работы достаточно подать единицу на вход A = B, а состояния входов A<B и A>B не важны, на них можно подать как нуль, так и единицу. Назначение выходов понятно из их названия, а полярность выходных сигналов положительная (активный уровень — единица).
Таблица 5.4. Таблица истинности компаратора СП1 | |||||||||
Входы сравниваемых кодов | Входы наращивания | Выходы | |||||||
A3,B3 | A2,B2 | A1,B1 | A0,B0 | A>B | A<B | A=B | A>B | A<B | A=B |
A3>B3 | X | X | X | X | X | X | |||
A3<B3 | X | X | X | X | X | X | |||
A3=B3 | A2>B2 | X | X | X | X | X | |||
A3=B3 | A2<B2 | X | X | X | X | X | |||
A3=B3 | A2=B2 | A1>B1 | X | X | X | X | |||
A3=B3 | A2=B2 | A1<B1 | X | X | X | X | |||
A3=B3 | A2=B2 | A1=B1 | A0>B0 | X | X | X | |||
A3=B3 | A2=B2 | A1=B1 | A0<B0 | X | X | X | |||
A3=B3 | A2=B2 | A1=B1 | A0=B0 | ||||||
A3=B3 | A2=B2 | A1=B1 | A0=B0 | ||||||
A3=B3 | A2=B2 | A1=B1 | A0=B0 | X | X | ||||
A3=B3 | A2=B2 | A1=B1 | A0=B0 | ||||||
A3=B3 | A2=B2 | A1=B1 | A0=B0 |
Одно из основных применений компараторов кодов состоит в селектировании входных кодов. В этом случае достаточно иметь информацию только о совпадении кодов на входах компаратора, а не о соотношении их величин. Интересующий нас код (эталонный) подается на один вход компаратора, а изменяющийся код (входной) — на другой вход. Используется только выход равенства кодов А = В.
Дата добавления: 2017-06-13; просмотров: 5407;