ВОЗДУШНЫЙ ЗАЗОР И ПОЛЮСЫ РОТОРА

 

Воздушный зазор в основном определяет технико-экономические показатели машин. С одной стороны, при увеличении зазора возрастают размеры обмотки возбуждения и потери в этой обмотке. С другой стороны, при малых зазорах повышаются добавочные потери на поверхности полюсных наконечников, а также появляется опасность при деформации ротора задевания его о статор. От зазора зависят возможные кратковременные перегрузки синхронной машины по моменту и мощности. На максимальные значения момента и электромагнитной мощности существенное влияние оказывает синхронное индуктивное сопротивление по продольной оси . Чем больше зазор, тем меньше индуктивное сопротивление и, следовательно, большими будут кратности максимальных значений момента и мощности . В синхронных машинах общего назначения при выборе воздушного зазоры обычно исходят из значения , при котором или будут иметь необходимые значения. Связь между и зазором устанавливается известным соотношением

. (10.42)

Учитывая, что , после преобразований получаем

, (10.43)

где — индуктивное сопротивление продольной реакции якоря; — индуктивные сопротивления рассеяния и синхронное индуктивное сопротивление по продольной оси; — коэффициент воздушного зазора; — коэффициент продольной реакции якоря по рис. 10.23; — коэффициент, учитывающий влияние магнитных напряжений стальных участков магнитной цепи и стыков между полюсом и ярмом для ненасыщенной машины; — максимальная индукция в зазоре при холостом ходе и номинальном напряжении, Тл; Г/м — магнитная постоянная.

Если принять в среднем и то получим

. (10.44)

В (10.44) подставляют в А/м, — в теслах, — в м, тогда получаем в метрах. Коэффициент в скобках выбирают тем меньше, чем большее значение имеет . Нижний его предел соответствует . На рис. 10.18 дана зависимость , полученная на основании осреднения расчетных данных явнополюсных синхронных машин общего назначения. По этой зависимости, исходя из заданного значения , можно предварительно найти и подставить в (10.44). Для синхронных двигателей согласно ГОСТ 183 . Такое же значение можно принимать для кратности максимальной мощности у генераторов. Обычно отношение лежит в пределах 1,65…2,5.

 

Рис. 10.18. Зависимость от

 

В современных синхронных машинах воздушный зазор по ширине полюсного наконечника делают неодинаковым. Чтобы получить распределение магнитного поля, приближающегося к синусоидальному, зазор под краями полюсов берут примерно в 1,5 раза больше, чем в середине, т. е. , где — зазор под серединой полюса. С этой целью радиус дуги полюсного наконечника выбирают меньше внутреннего радиуса статора (рис. 10.19):

. (10.45)

 

Рис. 10.19. Размеры ротора синхронной явнополюсной машины

 

Среднее значение зазора принимают равным:

. (10.46)

Равномерный воздушный зазор по всей ширине полюсного наконечника в настоящее время применяют иногда в машинах небольшой мощности.

Длина полюсной дуги

, (10.47)

где — коэффициент полюсного перекрытия (конструктивный).

При хорда, соединяющая края полюсного наконечника, практически не отличается от дуги.

От зависит использование активного объема машины. С увеличением при прочих равных условиях уменьшается объем активной части машины, но возрастает поток рассеяния полюсов. Обычно выбирают в пределах 0,68…0,73.

Полюсы чаще всего выполняют шихтованными. В крупных машинах для полюсов используют сталь Ст3 толщиной 1 или 1,4 мм. Запрессовку сердечников полюсов осуществляют с помощью нажимных щек и шпилек.

Полюсы в быстроходных машинах при м/с прикрепляют с помощью хвостов к шихтованному остову (см. рис. 10.3 и 10.19), а в тихоходных машинах приворачивают шпильками к ободу магнитного колеса (см. рис. 10.2). Шихтованный обод и магнитное колесо изготавливают из стали Ст3.

У машин мощностью меньше 100 кВт полюсы собирают из листов электротехнической стали и прикрепляют проходящими через них болтами к напрессованной на вал втулке или непосредственно к валу. Применяют конструкцию ротора, показанную на рис. 10.7. Более подробно о креплении полюсов изложено в § 9.5.

Высоту полюсного наконечника (см. рис. 10.19) выбирают, исходя из того, чтобы была возможность разместить на его краях стержни демпферной (пусковой) клетки, а также из условий достаточной механической прочности. В табл. 10.9 приведены значения в зависимости от полюсного деления машины.

Длины полюсного наконечник и полюса по оси машины принимают равными длине статора (или на 1—2 см меньше).

 

Таблица 10.9. Значения в зависимости от полюсного деления машины

 

, см 15—20 20—30 30—40 40—50 50—60 Примечание
, см 2,2—3 3—4 4—5 5—6 6—7,5 При наличии демпферной клетки
, см 1,6—2,2 2,2—3 3—3,7 3,7—4,5 4,5—5,5 При отсутствии демпферной клетки

 

 

Высота полюсного сердечника , м, предварительно может быть найдена по одной из следующих формул:

для машин 16—20-го габаритов:

;

 

для машин 10—15-го габаритов при :

; (10.48)

для машин 10—15-го габаритов при :

;

для машин небольшой мощности (до 100 кВт):

.

В (10.48) и подставляют в метрах.

Окончательно высоту устанавливают после расчета и укладки обмотки возбуждения (см. § 10.15) и вычерчивания эскиза с расположением ее проводников в межполюсном пространстве.

Ширину полюсного сердечника определяют, исходя из допустимого значения индукции в основании полюса. При определении индукции необходимо учитывать поток рассеяния полюса . Этот поток наряду с основным потоком проходит по сердечнику полюса (см. § 10.11). Таким образом, поток полюса

 

, (10.49)

где — коэффициент рассеяния.

Поток и коэффициент рассеяния зависят от размеров полюса, которые пока неизвестны. Предварительно коэффициент рассеяния можно определить так:

, (10.50)

где и — в метрах; — коэффициент, зависящий от высоты полюсного наконечника .

При выборе коэффициента можно руководствоваться следующими данными:

 

, см
8,5

 

Тогда ширину полюсного сердечника находят по следующей формуле

. (10.51)

 

Коэффициент заполнения полюса сталью принимают при толщине листов 1 мм — 0,95, при толщине листов 1,4 мм — 0,97. Индукцию выбирают в пределах 1,4…1,6 Тл.

Расчетная длина сердечника полюса, м,

, (10.52)

где — толщина одной нажимной щеки полюса, м:

.

В (10.52) принимают , а не , чтобы приближенно учесть ослабление сечения щек за счет закругления краев и отверстий для гаек стяжных шпилек.

Размеры остова или обода магнитного колеса в большинстве случаев определяются конструктивными соображениями и требованиями механической прочности и получаются больше, чем это необходимо для проведения магнитного потока. Ввиду этого при электромагнитном расчете определяют длину остова или обода и их минимально возможную толщину . В дальнейшем при размещении обмотки возбуждения на полюсе и при разработке конструкции толщина остова или обода, а также их внешние диаметры и размеры самого полюса должны быть уточнены:

, (10.53)

для крупных машин м, для средних м и для малых ;

. (10.54)

Индукция выбирается в пределах 1…1,3 Тл.

 






Дата добавления: 2017-05-02; просмотров: 2162; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.04 сек.