Опоры воздушных линий электропередачи
Опоры ВЛ предназначены для обеспечения требуемых расстояний между фазами и землей. Горизонтальное расстояние между центрами двух соседних опор одной линии называется пролетом. Различают переходный, промежуточный и анкерный пролеты. Анкерный пролет обычно состоит из нескольких промежуточных.
Типы опор
По числу цепей опоры классифицируются на одноцепные и двухцепные. ВЛ, имеющая две цепи, выполненная на двухцепных опорах, дешевле, чем две параллельные линии, выполненные на одноцепных опорах, и может быть сооружена в более короткий срок.
Опоры ВЛ делятся на две основные группы: промежуточные и анкерные. Кроме того, выделяют угловые, концевые и специальные опоры.
Промежуточные опоры устанавливают на прямых участках трассы. В нормальном режиме они воспринимают вертикальные нагрузки от массы проводов, изоляторов, арматуры и горизонтальные нагрузки от давления ветра на провода и опоры. При обрыве одного или нескольких проводов промежуточные опоры воспринимают дополнительную нагрузку, направленную вдоль линии, и подвергаются кручению и изгибу. Поэтому они изготавливаются с определенным запасом прочности. Число промежуточных опор на ВЛ составляет до 80 %.
Анкерные опоры устанавливают на прямых участках трассы для перехода ВЛ через инженерные сооружения или естественные препятствия. Их конструкция жестче и прочнее, так как они воспринимают продольную нагрузку от разности тяжения проводов и тросов в смежных анкерных пролетах, а при монтаже – от тяжения подвешенных с одной стороны проводов.
Угловые опоры устанавливаются на углах поворота трассы ВЛ. Углом поворота линии называется угол в плане линии (рис. 2.1), дополняющий до 1800 внутренний угол линии. Если угол поворота трассы меньше 200, устанавливают угловые промежуточные опоры, если больше 200 – угловые анкерные (рис. 2.1).
Рис. 2.1. План и профиль участка ВЛ:
А – анкерная опора, П – промежуточная опора, УП – угловая промежуточная опора, УА- угловая анкерная опора, КА- концевая анкерная опора
Концевые опоры являются разновидностью анкерных и устанавливаются в конце и начале линии. В нормальных условиях работы они воспринимают нагрузку от одностороннего тяжения проводов.
К специализированным относят транспозиционные опоры, конструкция которых позволяет изменить порядок расположения проводов на опоре; ответвительные - для устройства ответвления от магистральной линии и т.д.
Материал опор
Согласно нормам технологического проектирования воздушных линий электропередачи напряжением 35 кВ и выше, рекомендуются следующие области использования различных материалов для изготовления опор.
Деревянные опоры (сосна, лиственница зимней рубки, для неответственных деталей – ель, пихта) с пропиткой антисептиком применяются для одноцепных ВЛ 35 - 150 кВ там, где использование древесины экономически выгодно. Преимущество деревянных опор обусловлено их низкой стоимостью, достаточно высокой механической прочностью, высокими электроизоляционными свойствами, дешевизной. Главный недостаток – недолговечность.
Железобетонные опоры используются в условиях равнинной местности для одноцепных линий 35 – 220 кВ, на всех двухцепных линиях - 35 – 110 кВ, на ВЛ - 500 кВ, проходящей в равнинной местности, где металлические опоры экономически нецелесообразны. Железобетонные опоры не разрешается применять на ВЛ, проходящей в горной или сильно пересеченной местности. Железобетонные опоры обладают высокой механической прочностью, долговечны, дешевы в эксплуатации, изготовлении и сборке по сравнению с металлическими. Их недостатком является большая масса, что увеличивает транспортные расходы. В железобетонных опорах основные усилия при растяжении воспринимает стальная арматура, так как бетон плохо работает на растяжение, но при сжатии основные нагрузки воспринимаются бетоном.
Совместная работа бетона и стали обусловлена следующими их свойствами. Бетон при твердении прочно скрепляется с арматурой за счет склеивания и трения, вызванного усадкой бетона при твердении, в результате чего происходит обжатие стержней арматуры бетоном. Вследствие этого при воздействии внешних усилий оба материала работают совместно, смежные участки бетона и стали получают одинаковые деформации. Сталь и бетон имеют примерно одинаковые коэффициенты линейного расширения, что исключает появление внутренних напряжений в железобетоне при изменениях наружной температуры. Бетон надежно защищает арматуру от коррозии и при скачках температуры воспринимает сжимающее напряжение. Недостаток железобетона – образование в нем трещин, особенно в местах соприкосновения с грунтом. Для повышения трещиностойкости применяют предварительное напряжение арматуры, которое создает дополнительное обжатие бетона. Основными элементами железобетонных опор являются стойки, траверсы, тросостойки и ригели. На железобетонных заводах стойки изготавливают либо на центрифугах, выполняющих формовку и уплотнение бетона, либо способом вибрирования, уплотняя бетонную смесь вибраторами. Способом центрифугирования изготавливают круглые полые конические и цилиндрические стойки, способом вибрирования – прямоугольные (ГОСТ 22387,0-85). Для двухцепных ВЛ напряжением более 35 кВ и выше используют центрифугированные стойки, имеющие маркировку СК (стойки конические) и СЦ (стойки цилиндрические). Стойки СК применяют на ВЛ 35-750 кВ двух типов: длиной 22,6 м и 26 м с соответственно верхним и нижним диаметрами 440/650 мм и 416/650 мм, изготовленные в одной унифицированной опалубке. Стойки СЦ изготавливают длиной 20 м и диаметром 800 мм. Для ВЛ 35 кВ используют вибростойки СВ длиной 16,4 м.
Металлические опоры применяются на двухцепных ВЛ 35-500 кВ, на одноцепных ВЛ 110, 220, 330 кВ, где невозможно или нецелесообразно применение железобетонных опор, на ВЛ 750 кВ. Основные конструкции металлических опор изготавливают из стали Ст3, наиболее напряженные узлы опор - из низколегированных сталей. Части опор подвергают заводской горячей оцинковке. Сборка опор производится с помощью болтовых соединений. Их преимущество перед железобетонными в том, что они позволяют создавать конструкции, рассчитанные на большие нагрузки и любые климатические условия, обладают высокой механической прочностью при относительно небольшой массе. Однако они достаточно дороги и подвержены коррозии. Стальные опоры могут быть по конструкции одностоечными (башенными) и портальными, а по способу закрепления на фундаментах – свободностоящими или с оттяжками.
Унификация опор
По результатам многолетней практики строительства и эксплуатации ВЛ определяются наиболее целесообразные и экономичные типы и конструкции опор и систематически проводится их унификация, которая позволяет использовать единую удобную систему обозначений и классификаций. Унификация позволяет сократить общее количество типов опор, количество типоразмеров деталей опор, подобрать при необходимости рациональную замену опор или их деталей, организовать их массовое производство на специализированных заводах. Согласно унификации, для каждого типа опоры установлены условия применения: напряжение ВЛ, число цепей, район по гололеду, максимальная скорость ветра, диапазоны марок проводов, марки тросов. Последняя унификация для стальных опор проводилась в 1995-96 гг., согласно ей, расширен диапазон применяемых сечений проводов, что позволяет обеспечить оптимальную плотность тока, унифицированы длины гирлянд изоляторов, выработаны рекомендации по учету степени загрязнения атмосферы при выборе изоляторов, внесены изменения в конструкции опор, изменены названия типов опор. По этим условиям в справочниках выбирается соответствующий тип опоры, в наименовании которого отражены следующие признаки:
1) вид опоры: П – промежуточная, У – угловая (промежуточная или анкерная), С – специализированная;
2) материал опор: Д – дерево, Б – железобетон, для металлических опор буквенное обозначение отсутствует;
3) номинальное напряжение ВЛ;
4) типоразмер – это цифра, отражающая прочностные свойства опоры: четная цифра присвоена двуцепной опоре, нечетная – одноцепной.
Например, ПБ35-3 – промежуточная железобетонная одноцепная опора для ВЛ напряжением 35 кВ (предназначена для строительства ВЛ в III-IV районах по гололеду, скорости ветра до 30 м/с, с проводами АС95/16-АС150/24 и тросом ТК-35).
Важнейшими характеристиками ВЛ, зависящими от типа опоры, являются понятия габарита и габаритного пролета. Габаритом Г называется наименьшее, допустимое ПУЭ, расстояние по вертикали между низшей точкой провисания провода до пересекаемых инженерных сооружений или поверхности земли, либо воды. Значения габарита определены из соображений безопасной эксплуатации ВЛ (табл. 2.1).
Таблица 2.1
Характер местности | Расстояние от провода до земли (габарит), м, при номинальном напряжении ВЛ | ||||
до 35 кВ | 110 кВ | 220 кВ | 330 кВ | 500 кВ | |
Ненаселенная | 6,0 | 6,0 | 7,0 | 7,5 | 8,0 |
Населенная | 7,0 | 7,0 | 8,0 | 8,0 | 8,0 |
Труднодоступная | 5,0 | 5,0 | 6,0 | 6,5 | 7,0 |
Габаритный пролет – это пролет, определяемый по условию допустимого расстояния от проводов до земли при условии установки опор на идеально ровной поверхности. Значения габаритных пролетов указываются в технических характеристиках опор.
При механическом расчете проводов и тросов используется величина расчетного расстояния между двумя соседними опорами, так называемый расчетный пролет. Длина расчетного пролета определяется выражением:
,
где - длина габаритного пролета, м.
- коэффициент, значение которого рекомендуется определять в соответствии с местностью, для которой проектируется участок ВЛ: для населенной местности, - для ненаселенной.
При расстановке опор на идеально ровной поверхности , то есть . Опыт проектирования показывает, что усредненное значение пролета вследствие неровности местности меньше габаритного.
Дата добавления: 2017-04-05; просмотров: 8381;