Порошковые быстрорежущие стали.


Наиболее эффективные возможности повышения качества быстрорежущей стали, ее эксплуатационных свойств, и создания новых режущих материалов появились при использовании порошковой металлургии.

Порошковая быстрорежущая сталь характеризуется однородной мелкозернистой структурой, равномерным распределением карбидной фазы, пониженной деформируемостью в процессе термической обработки, хорошей шлифуемостью, более высокими технологическими и механическими свойствами, чем сталь аналогичных марок, полученных но традиционной технологии. Технологическая схема получения порошковых быстрорежущих сталей следующая: газовое распыление в порошок жидкой струи быстрорежущей стали, засыпка и дегазация порошка в цилиндрический контейнер, нагрев и ковка (или прокатка) контейнеров в прутки, окончательная резцовая обдирка остатков контейнера с поверхности прутков. Основным преимуществом порошковой технологии является резкое снижение размеров карбидов, образующихся при кристаллизации слитка в изложнице.

Основные примеры разработки новых составов порошковой быстрорежущей стали сводятся к возможности введения в состав до 7% ванадия и значительного, в связи с этим, повышения износостойкости без ухудшения шлифуемости. А также введение углерода с «пересыщением» до 1,7%, позволяющего получить значительное количество карбидов ванадия и высокую вторичную твердость после закалки с отпуском. Основные марки порошковой стали: Р7М2Ф6-МП, Р6М5ФЗ-МП, Р9М2Ф6К5-МП, Р12МФ5-МП и др.

Технология порошковой металлургии также используется для получения карбидостали, которая по своим свойствам может быть классифицирована как промежуточная между быстрорежущей сталью и твердыми сплавами.

Карбидосталь отличается от обычной быстрорежущей стали высоким содержанием карбидной фазы (в основном карбидов титана), что достигается путем смешивания порошка быстрорежущей стали и мелкодисперсных частиц карбида титана. Содержание TiC в карбидостали составляет 20%. Пластическим деформированием спрессованного порошка получают заготовки простой формы. В отожженном состоянии твердость карбидостали составляет HRC 40…44, а после закалки и отпуска HRC 68…70. При использовании в качестве материала режущего инструмента карбидосталь обеспечивает повышение стойкости в 1,5…2 раза по сравнению с аналогичными марками обычной технологии производства. В ряде случаев карбидосталь является полноценным заменителем твердых сплавов, особенно при изготовлении формообразующих инструментов (протяжки).

Твердые сплавы

Являются основным инструментальным материалом, обеспечивающим высокопроизводительную обработку материалов резанием. Сейчас общее количество твердосплавного инструмента, применяемого в механо-обрабатывающем производстве, составляет до 30%, причем этим инструментом снимается до 65% стружки, т. к. скорость резания, применяемая при обработке твердым сплавом в 2…5 раз выше, чем у быстрорежущего инструмента.

Твердые сплавыполучают методом порошковой металлургии в виде пластин. Основными компонентами таких сплавов являются карбиды: вольфрама WC, титана TiC, тантала ТаС и ниобия NbC, мельчайшие частицы которых соединены посредством сравнительно мягких и менее тугоплавких связок из кобальта или никеля в смеси с молибденом .Твердые сплавы по составу и областям применения можно разделить на четыре группы: вольфрамо-кобальтовые (WC- Co), титано-вольфрамо-кобальтовые(WC-TiC- Co), титано-тантало-вольфрамо-кобальтовые(WC-TiC-TaC- Co), безвольфрамовые(наоснове TiC, TiCN с различными связками).



Дата добавления: 2017-02-13; просмотров: 3042;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.