Определение теории систем
Потребности практики и науки стимулировали появление и развитие научного направления системных исследований, охватывающих самые различные объекты, которое получило название теория систем.
Теория систем рассматривается как общенаучная теория, которая выступает связующим звеном между философией и другими науками.
Теория систем имеет свой объект, предмет и задачи. Объект исследования теории систем - сложные системы. Предмет - методы создания и развития систем. Задачи теории систем:
Развитие системных концепций общего характера. Построение обобщенных концептуальных моделей систем различных классов.
Разработка общих принципов организации и логико-математического аппарата для системных исследований.
Создание различных частных теорий систем.
Теория систем является еще молодой̆ ветвью в науке, и ее становление происходит в настоящее время. Эта теория зародилась в 30-х годах XX в. и в 50-е годы сформировалась как самостоятельное научное направление. Основоположником этой теории по праву считается австрийский биолог Людвиг фон Берталанфи. В создании теории принимали участие М. Месарович, Я. Такахара,
Г. Саймон, А. Холл, Ч. Дарвин, Д. Менделеев, Г. Поспелов, Н. Бусленко и др.
Теория еще не сформировалась, однако и на этой стадии она приносит пользу, предлагая единый понятийный аппарат и методологию исследования сложных объектов. При этом делается попытка создания формального аппарата, который будет служить теоретическим фундаментом для целого ряда наук.
Теория систем, как отрасль науки, может быть разделена на две, достаточно условные части:
- теоретическую: использующую такие частные теории как теория вероятностей, теория информации, теория массового обслуживания и др.;
- прикладную, основанную на прикладной математической статистике, методах исследовании операций и т. п.
Теория вероятности есть математическая наука, изучающая закономерности в случайных явлениях. Совершенно очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной мере элементы случайности. Элемент неопределенности, сложности, многопричинности, присущей случайным явлениям, требует создания специальных методов для изучения этих явлений. Такие методы и разрабатываются в теории вероятности. Ее предметом является специфические закономерности, наблюдаемые в случайных явлениях.
Изучение таких закономерностей позволяет не только осуществлять научный прогноз в области случайных явлений, но в ряде случаев помогает целенаправленно влиять на ход случайных явлений, контролировать их, ограничивать сферу действия случайности, сужать ее влияние на практику.
Теория информации - есть наука, изучающая способы обработки информации, т. е. получения, передачи, накопления, преобразования, хранения и выдачи информации. Возникнув в 40-х годах двадцатого века на практических задачах теории связи, теория информации в настоящее время становится необходимым математическим аппаратом при изучении всевозможных процессов управления.
Черты случайности, присущие процессам обработки информации, заставляют обращаться при изучении этих процессов к вероятностным методам. При этом не удается ограничиться классическими методами теории вероятностей и возникает необходимость в создании новых вероятностных категорий. Процесс обработки информации непременное условие работы любой управляющей системы. В этом процессе всегда происходит обмен информацией между различными элементами системы.
Теория массового обслуживания. В настоящее время существует необходимость в решении своеобразных вероятностных задач, связанных с так называемых систем массового обслуживания. Каждая такая система состоит из какого-то числа обслуживающих единиц, которые называют «каналами» обслуживания.
В качестве каналов могут фигурировать: линии связи, лица, выполняющие те или иные операции, различные приборы и т. д.
Работа любой̆ системы массового обслуживания состоит в выполнении поступающего на нее потока требований или заявок. Предмет теории массового обслуживания - установление зависимости между характером потока заявок, производительностью отдельного канала, числом каналов и, эффективностью обслуживания
Прикладная математическая статистика - раздел прикладной математики, в котором изучается математический аппарат и программное обеспечение для исследования статистических моделей в целях интерпретации результатов и получения практических выводов.
К статистическим математическим моделям относятся модели законов распределения вероятностей̆, а также модели, описывающие структуру и модели регрессии, дисперсионного анализа, анализа временных рядов и т. д.
Статистические модели позволяют учитывать все многообразие связей и факторов, оказывающих влияние на исследуемые объекты. Их получение не требует значительных средств: объект рассматривается как «черный ящик», а реальные взаимосвязи апроксимируются некоторыми зависимостями.
Исследования операций - это наука, которая занимается выработкой количественных рекомендаций, необходимых для организации операций. Напомним, что под операцией здесь понимается любое целенаправленное действие человека, группы людей и систем человек-машина (т. е. элементов системы).
Предметом изучения этой̆ науки являются операции, выполняемые элементами системы. При этом количество элементов и их свойства могут варьироваться в широком диапазоне. Основными методами теории исследования операций являются математические методы.
Теория систем широко использует достижения многих отраслей науки и этот захват непрерывно расширяется.
Вместе с тем, в теории систем имеется свое "ядро", свои особые методы - системный подход и системный анализ.
Сущность метода системного подхода достаточно проста: все элементы системы и все операции в ней должны рассматриваться только как одно целое, только в совокупности, только во взаимосвязи друг с другом.
Плачевный опыт попыток решения системных вопросов с игнорированием этого принципа, попыток использования "местечкового" подхода достаточно хорошо изучен. Локальные решения, учет недостаточного числа факторов, локальная оптимизация — на уровне отдельных элементов, почти всегда приводили к неэффективному в целом, a иногда и опасному по последствиям, результату.
К основным принципам системного подхода можно отнести:
1. первый принцип - это требование рассматривать совокупность элементов системы как одно целое или, более жестко, — запрет на рассмотрение системы как простого объединения элементов;
2. второй принцип заключается впризнании того, что свойства системы не просто сумма свойств ее элементов. Тем самым постулируется возможность того, что система обладает особыми свойствами, которых может и не быть у отдельных элементов;
3. третьим принципом может считаться максимум функции системы. Теоретически доказано, что всегда существует функция ценности системы — в виде зависимости ее эффективности (почти всегда это экономический показатель) от условий построения и функционирования. Кроме того, эта функция ограничена, а значит можно и нужно искать ее максимум;
4. четвертый принцип запрещает рассматривать данную систему в отрыве от окружающей ее среды — как автономную, обособленную. Это означает обязательность учета внешних связей или, в более общем виде, требование рассматривать анализируемую систему как часть подсистему) некоторой более общей системы;
5. пятый принцип - возможность (а иногда и необходимость) деления данной системы на части, подсистемы. Если последние оказываются недостаточно просты для анализа, с ними поступают точно также. Но в процессе такого деления нельзя нарушать предыдущие принципы;
6. шестой принцип - система должна рассматриваться на всех этапах жизненного цикла: происхождение, развитие, разрушение (гибель).
На концепции систем и системного подхода основана методология решения крупных проблем - системный анализ. При этом системный анализ имеет свою специфическую цель, содержание и предназначение
Дата добавления: 2021-04-21; просмотров: 287;