КОЖУХОТРУБЧАТЫЕ ТЕПЛООБМЕННИКИ.

Теплообменники жесткого типа(рис. 8.3.2) имеют цилиндрический корпус 1, в котором установлен трубный пучок 2, закрепленный в трубных решетках 4, в которых трубки закреплены развальцовкой или сваркой. Корпус аппарата закрыт крышками 5 и 6. Внутри корпуса установлены перегородки 3, создающие определенное направление движения потока и увеличивающие его скорость в корпусе (рис. 8.3.4).

Рис. 8.3.2. Кожухотрубчатый теплообменник жесткого типа:

1 — кожух (корпус); 2 — трубка; 3 — поперечная перегородка; 4 — трубная решетка; 5 — крышка; 6 — крышка (распределительная коробка); 3,8 — продольные перегородки соответственно в распределительной коробке и в корпусе.

Рис. 8.3.3. Кожухотрубчатый теплообменник с линзовым компенсатором на корпусе.

Для удлинения пути жидкости в корпусе пучки труб снабжают поперечными перегородкамииз листовой стали толщиной 5 мм и более. Расстояние между перегородками принимают от 0,2 м до 50 ДН – наружный диаметр теплообменной трубы. Геометрическая форма перегородок и их взаимное расположение определяют характер движения потока по корпусу теплооб­менника.

Рис. 8.3.4. Типы поперечных перегородок:

I – с секторным вырезом, обеспечивающим ток жидкости по винтовой линии;

II – с щелевым вырезом, обеспечивающим волнообразное движение;

III – с сегментным вырезом;

IV – кольцевые, обеспечивающие движение от периферии к центру, и наоборот.

Поперечные перегородки фиксируются одна по отношению к другой посредством распорных труб, прижимаемых к ним общими тягами (обычно четырьмя). Кроме технологического назначения поперечные перегородки служат также промежуточными опорами для трубного пучка, препятствуя прогибанию его при горизонтальном расположении аппарата.

Одна из теплообменивающихся сред движется по трубкам, а другая — внутри корпуса между трубками. В трубки пускают более загрязненную среду, а также среду с меньшим коэффициентом теплоотдачи, так как очистка наружной поверхности трубок затруднена, а скорости движения среды в межтрубном простран­стве меньше, чем в трубках.

Поскольку температуры теплообменивающихся сред различаются, корпус и трубки получают различные удлинения, что приводит к возникновению дополнительных напряжений в элементах теплообменника. При большой разности температур это может привести к деформации и даже разрушению трубок и корпуса, нарушению плотности развальцовки и т.п. Поэтому теплообмен­ники жесткого типа применяют при разности температур теплообменивающихся сред не более 50°С.

Теплообменники с линзовым компенсатором на корпусе (рис. 8.3.3) применяют для уменьшения температурных напряжений в аппаратах жесткого типа. Такие теплообменники имеют на корпусе линзовый компенсатор, за счет деформации которого снижаются температурные усилия в корпусе и трубках. Это снижение тем больше, чем больше число линз у компенсатора.

Теплообменники с плавающей головкой (рис. 8.3.5) нашли наи­более широкое применение. В этих аппаратах один конец трубного пучка закреплен в трубной решетке, связанной с корпусом (на рис. слева), а второй может свободно перемещаться относительно корпуса при температурных изменениях длины трубок. Это устраняет температурные напряжения в конструкции и позволяет работать с большими разностями температур теплообмениваю­щихся сред. Кроме того, возможна чистка трубного пучка и корпуса аппарата, облегчается замена труб пучка. Однако конструк­ция теплообменников с плавающей головкой более сложна, а плавающая головка недоступна для осмотра при работе аппарата.

Рис. 8.3.5. Кожухотрубчатый теплообменный аппарат с плавающей головкой:

1 – кожух; 2,3 – входная и выходная камеры (крышки); 4 – трубный пучок; 5 – трубные решётки; 6 – крышка плавающей головки; 7 – перегородки; 8 – струбцины крепления крышки; 9 – опоры; 10 – фундамент; 11 – межтрубные направляющие перегородки; 12 – скользящая опора трубного пучка; I, II – вход и выход греющего теплоносителя; III, IV – вход и выход нагреваемого потока.

Перегородки, устанавливаемые в распределительной камере и в плавающей головке, увеличивают число ходов в трубном пучке. Это позволяет увеличить скорость движения потока и коэффициент теплоотдачи ко внутренней стенке труб.

Межтрубное пространство аппаратов с плавающей головкой обычно выполняется одноходовым. При двух ходах в корпусе устанавливают продольную перегородку. Однако в этом случае требуется специальное уплотнение между перегородкой и корпусом. Поверхность теплообмена кожухотрубчатых теплообменников может составлять 1200 м2 при длине труб от 3 до 9 м; условное давление достигает 6,4 МПа.

 

Теплообменники с U-образными трубками (рис. 8.3.6) имеют трубный пучок, трубки которого изогнуты в виде латинской буквы и, и оба конца закреплены в трубной решетке, что обеспечивает свободное удлинение трубок независимо от корпуса. Такие теплообменники применяют при повышенных давлениях. Среда, направляемая в трубки, должна быть достаточно чистой, так как очистка внутренней поверхности труб затруднена.

Рис. 8.3.5. Кожухотрубчатый теплообменник с плавающей головкой.

Рис.8.3.6. Кожухотрубчатый теплообменник с U-образными трубками

.

В зависимости от числа продольных перегородок в корпусе и распределительных коробках теплообменные кожухотрубчатые аппараты делятся на одно-, двух- и многоходовые как в трубном, так и в межтрубном пространстве. Так, на рис. 8.3.2 теплообменник является двухходовым как по трубному, так и по межтрубному пространству, что достигается установкой продольных перегородок 7 и 8.

теплообменники типа ''труба в трубе".

В отличие от кожухотрубчатых аппаратов, где в кожухе размещается пучок из нескольких сотен трубок, в аппаратах этого типа каждая трубка имеет свой индивидуальный кожух (рис. 8.3.7). Теплообменный аппарат набирается из нескольких таких секций, соединенных коллекторами на входе и выходе греющего теплоносителя. Применяют такие аппараты для нагрева вязких и высоковязких нефтепродуктов (нефти дизельного топлива, мазутов, гудронов).

Аппараты "труба в трубе" изготавливают неразборными и разборными. Первые из них используют для сред, не дающих отложений в межтрубном пространстве, внешние трубы которых соединены патрубками сваркой. Соединения внутренних труб у таких аппаратов могут быть жесткими (переходные двойники 3 приварены к трубкам) и разъемными (двойники на фланцах, как показано на рисунке). При жесткой системе теплообменник может применяться для таких сред, при использовании которых разность температур наружной и внутренней трубы должна быть не более 50°С.

Рис. 8.3.7. Секция четырехходового неразборного теплообменника типа "труба в трубе":

1, 2 – наружная и внутренняя трубы; 3 – поворотный двойник;I, II – вход и выход греющего теплоносителя; III, IV – вход и выход нагреваемого потока.

 

Рис. 8.3.8. Секция однопоточного разборного теплообменника типа "труба в трубе":

1 – внешние трубы; 2 – внутренние трубы; 3 – крышка; 4 – поворотные двойники; 5 –перегородка; 6 – трубная решетка; А – вход и выход более загрязненного потока; Б – вход и выход менее загрязненного потока

Разборные аппараты "труба в трубе" (рис. 8.3.8) выполняют из секций, где внешние трубы 4 объединяются общей крышкой 3, служащей для поворота потока теплоносителя из одной внешней трубы в другую, а внутренние трубы соединяются с помощью поворотных двойников на фланцах внутри этой крышки. Из таких секций может набираться батарея многопоточного аппарата, если расход теплоносителей большой (10–200 т/ч в трубе и до 300 т/ч в межтрубном пространстве). Преимущество разборных аппаратов "труба в трубе" состоит в том, что их можно регулярно (как и кожухотрубные) очищать от отложений и менять внутренние или внешние трубы в случае их повреждений или коррозии.

Обычно в аппаратах "труба в трубе" более загрязненный поток теплоносителя пускают по внутренним трубкам, а менее загрязненный – по межтрубному пространству.

В теплообменниках разборной конструкции внутренние трубы снаружной стороны могут иметь оребрение для увеличения площади теплообмена и повышения тем самым эффективности теплопередачи. Разборные теплообменники позволяют осуществлять чистку наружных и внутренних поверхностей труб, а также применять оребрённые внутренние трубы. Это дает возможность значительно увеличить количество переданного тепла. На рис 8.3.9 показаны оребрённые трубы.

Рис. 8.3.9. Оребрённые трубы:

а — ребра корытообразные приварные; б — ребра завальцованные; в — ребра выдавленные; г — ребра приварные шиповидные; д — ребра накатанные.






Дата добавления: 2016-12-16; просмотров: 9054; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.029 сек.