Структура малоуглеродистой стали


 

Сталь - это сплав железа с углеродом, содержащий легирующие добавки, улучшающие качество металла, и вредные примеси, кото­рые попадают в металл из руды или образуются в процессе выплав­ки.

В твердом состоянии сталь является поликри­сталлическим телом, состоящим из множества различно ориентиро­ванных кристаллов (зерен). В каждом кристалле по­ложительно заряженные ионы расположены упорядоченно в узлах пространственной решетки. Для стали характерны кубические кристаллические объемно-центрированная и гранецентрированная решетки (рис. 2.1).

Рис. 2.1. Кубическая кристаллическая решетка:

а - объемно-центрированная; б - гране­центрированная

Структура стали зависит от условий кристаллизации, хи­мического состава, режима термообработки и прокатки.

Температура плавления чистого железа равна 1539°С. При охлаждении образуются кристаллы d-железа с объемно-центрированной решеткой (рис. 2.1, а); при температуре 1400°С происходит перекристаллизация и d-железо пе­реходит в g-железо с гранецентрированной решеткой (рис. 2.1, б). При 910°С и ниже кристаллы g-железа вновь превращаются в объем­но-центрированные с сохранением такого состояния в обычных ус­ловиях (a-железо).

При дальнейшем остывании стали образуется твердый раствор углерода в g-железе, называемый аустенитом, в котором атомы углерода распо­лагаются в центре гранецентрированной кристаллической решетки. При темпе­ратуре ниже 910°С начинается распад аустенита. Образующееся a-железо (феррит) плохо растворяет углерод. По мере выделения феррита аустенит обога­щается углеродом и при температуре 727°С превращается в перлит - смесь феррита и карбида железа Fe3С (цементи­т).

Таким образом, при нормальной температуре сталь состоит из двух основных фаз - феррита и цементита, которые образуют са­мостоятельные зерна, а также входят в виде пластинок в состав пер­лита.

Феррит весьма пластичен и малопрочен, цементит тверд и хру­пок, перлит обладает промежуточными между ними свойствами. В зависимости от содержания углерода преобладает та или иная струк­турная составляющая. Величина зерен феррита и перлита зависит от числа очагов кристаллизации и условий охлаждения. Размер зерна существенно влияет на механические свойства стали (чем мельче зерно, тем выше качество металла).

 

Структура низколегированных сталей

 

Структура низколегированных сталей аналогична структуре малоуглеродистой ста­ли. Низколегированные стали тоже содержат мало углерода, повышение их прочности достигается легированием - добавками, которые, как правило, находятся в твердом растворе с ферритом и растворяясь, упрочняют его. Легирующие добавки образуют карбиды и нитриды, также упрочняющие ферритовую основу и способствуют образованию мелкозернистой структуры.

Основные химические элементы, применяемые при легировании:

Углеродистая сталь обыкновенного качества состоит из железа и углерода с неко­торой добавкой кремния или алюминия, марганца, меди.

Углерод (У), повышая прочность стали, снижает ее пластичность и ухудшает сва­риваемость; поэтому в строительных сталях, которые должны быть достаточно плас­тичными и хорошо свариваемыми, углерод допускается в количестве не более 0,22 %.

Кремний (С), повышает прочность ста­ли, ухудшает ее свариваемость и стойкость против коррозии. В малоуглеродистых сталях кремний применяется как хороший раскислитель; в малоуглеро­дистые стали добавляется до 0,3 % кремния, в низколегированные - до 1 %.

Алюминий (Ю) хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость.

Марганец (Г) повышает прочность и вязкость стали, хороший раскислитель, соединяясь с серой, снижает ее вредное влияние. В ма­лоуглеродистых сталях марганца содержится до 0,64 %, в легированных - до 1,5 %; при содержании марганца более 1,5 % сталь становится хрупкой.

Медь (Д) несколько повышает прочность стали и увеличивает стойкость ее против коррозии. Избыточное содержание (более 0,7 %) способствует старению стали.

Молибден (М)и бор (Р) обеспечивают высокую устойчивость аустенита при охлаждении, что очень важно для получения высокопрочного проката боль­ших толщин. После закалки и высокого отпуска сталь становится мелкозернистой, на­сыщенной карбидами. Такая сталь обладает высокой прочностью, удовлетворительной пластичностью и почти не разупрочняется при сварке.

Примечание. При обозначении марки стали каждому химическому элементу присвоена буква русского алфавита (указана в скобках около каждого элемента), содержание каж­дого элемента в процентах с округлением до целых значений указывается после бук­вы, обозначающей данный элемент (элемент содержащийся в пределах 1 %, цифрами не указывается). Поскольку углерод содержится во всех сталях, его обозначение (буква У) не ставится, а количественное содержание указывается в сотых долях процента в на­чале обозначения марки. Так, 15Г2СФ означает, что в этой стали среднее содержание углерода 0,15 %, марганца - в пределах 1—2 %, кремния и ванадия - в пределах 1 % каждого.

Азот (А) в несвязанном состоянии способствует старению стали и делает ее хрупкой, особенно при низких температурах. Его не должно быть более 0,008 %.

Повышение механических свойств низколегированной стали осуществляется также присадкой металлов: марганец (Г), хром (Х), ваннадий (Ф), вольфрам (В), молибден (М), титан (Т).

Вольфрам и молибден, значительно повышая твердость, снижают пластические свойства стали.

Вредные примеси. Фосфор - повышает хрупкость стали, особенно при пониженных температурах (хладоломкость), и снижает пластичность при повышенных; сера - делает сталь красноломкой (склонной к об­разованию трещин при температуре 800 - 1000 °С). Поэтому содержание серы и фос­фора в стали ограничивается: так, в углеродистой стали Ст 3 серы дол­жно быть не больше 0,05 % и фосфора - 0,04 %.

Вредное влияние на механические свойства стали оказывает насы­щение ее газами, которые могут попасть из атмосферы в металл, нахо­дящийся в расплавленном состоянии. Кислород повышает хрупкость стали, несвязан­ный азоттакже снижает качество стали, водород (всего 0,0007 %) вызывает в микрообъемах высокие напря­жения, что приводит к снижению сопротивления стали хрупкому разру­шению, снижению временного сопротивления и ухудшению пластических свойств. Поэтому расплавленную сталь (например, при сварке) необхо­димо защищать от воздействия атмосферы.

Значительного повышения прочности, де­формационных и других свойств стали помимо легирования достигают термической обработкой. Под влиянием температу­ры, а также режима нагрева и охлаждения изменяются структура, ве­личина зерна и растворимость легирующих элементов стали.

Простейшим видом термической обработки являетсянормализация. Она заключает­ся в повторном нагреве проката до температуры образования аустенита и последую­щего охлаждения на воздухе. После нормализации структура стали получается более упорядоченной, снимаются внутренние напряжения, что приводит к улучшению проч­ностных и пластических свойств стального проката и его ударной вязкости.

Свойства стали

 

Надежность и долговечность ме­таллических конструкций во многом определяется механическими свойствами стали.

Прочность - сопротивление материала внешним силовым воздействиям без разрушения.

Упругость - свойство мате­риала восстанавливать свою первоначальную форму после снятия внешних нагрузок.

Пластичность - свойство материала сохранять несущую способность в процессе деформирования.

Хрупкость - склонность к разрушению при малых деформациях.

Ползучесть - свойство материала непрерывно деформироваться во времени без увеличения нагрузки.

Твердость - свойство поверхностного слоя ме­талла сопротивляться деформации или разрушению при внедрении в него индентора из более твердого материала.

Прочность металла при статическом нагружении, а также его уп­ругие и пластические свойства определяют испытанием стан­дартных образцов (прямоугольного или круглого сечения) на рас­тяжение с записью диаграммы зависимости между напряжением s и относительным удлинением e (рис.2.1)

; , (2.1)

где F – нагрузка;

A – первоначальная площадь поперечного сечения образца;

l0 – первоначальная длина рабочей части образца;

Δl – удлинение рабочей части образца.

Примечание. Большое препятствие образованию сдвигов в зернах феррита создают в стали более прочные зерна перлита поэтому прочность стали значительно выше прочности чистого железа.

 

Рисунок 2.1 – Образец и диаграмма растяжения стали

а - образец для испытания на растяжение; б – диаграммы растяжения сталей и чугуна (1 – малоуглеродистая сталь; 2 – чугун; 3 – высокопрочная сталь)

 

Основными прочностными характеристиками металла являются временное сопротивление и предел текучести. Временное сопротивление (su) - предельная разрушающая нагрузка, отне­сенная к первоначальной площади поперечного сечения образца. Предел текучести(sy) - напряжение, которое соответствует оста­точному относительному удлинению после разгрузки, равному 0,2%. В мягких сталях при таком напряжении начинается интенсивный процесс развития деформаций, которые растут без изменения нагрузки с образованием площадки текучести - металл "течет". Для сталей, не имеющих площадки текучести, вводят понятие условного предела те­кучести s02, величину которого определяют по тем же правилам.

Мерой пластичности материала служит относительное остаточ­ное удлинение при разрыве d. Перед разрушением в образце в месте разрыва образуется "шейка", поперечное сечение образца уменьша­ется, и в зоне шейки развиваются большие местные пластические деформации. Относительное удлинение при разрыве складывается из равномерного удлинения на всей длине образца dr и локального уд­линения в зоне шейки dloc.

Временное сопротивление, предел текучести и относительное удлинениеустанавливаются в стандартах на сталь.

Упругие свойства материала характеризуют модулем упругостиЕ = tga (a - угол наклона начального участка диаграммы работы стали к оси абсцисс) и пределом упругости sc, т. е. таким максимальным напряжением, после снятия которого остаточные деформации отсут­ствуют. Несколько ниже scнаходится предел пропорциональности sр - напря­жение, до которого материал работает линейно по закону Гука

s = Е e . (2.2)



Дата добавления: 2016-12-09; просмотров: 4493;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.