Триодные тиристоры.


 

Триодный тиристор (тринистор) – это тиристор, имеющий два основных и один управляющий выводы.

Для переключения тринистора из закрытого в открытое состояние тоже необходимо накопление избыточных носителей заряда в базовых областях. В динисторе при повышении анодного напряжения до Uвкл это накопление неравновесных носителей заряда происходит либо из-за увеличения уровня инжекции через эмиттерные переходы, либо из-за ударной ионизации в ОПЗ коллекторного перехода. В тринисторе, имеющем дополнительный управляющий вывод от одной из базовых областей, можно повысить уровень инжекции через прилегающий к ней эмиттерный переход путем подачи на него дополнительного прямого напряжения. Таким образом, можно добиться переключения тринистора в открытое состояние даже при небольшом анодном напряжении, меньшем Uвкл.

Часто бывает удобным представление тиристора в виде эквивалентной модели, составленной из двух транзисторов. Если на рис. 4,а провести мысленно разрез по штриховой линии, то получится схема, представленная на рис. 4,б. Она состоит из двух транзисторов: VT1 p-n-p типа и VT2 n-p-n типа. Эмиттерные переходы тиристора являются эмиттерными переходами транзисторов, а коллекторный переход тиристора является общим коллекторным переходом обоих транзисторов. Слой n1 – это база VT1 и коллектор VT2, а слой p2 – база VT2 и коллектор VT1. Поскольку разрез только мысленный, то в тиристоре базы каждого транзистора напрямую соединены с коллекторами другого транзистора, то есть коллекторный ток первого транзистора является базовым током второго, и наоборот.

 

Используем эту модель для анализа механизма переключения тринистора с помощью управляющего тока. Усилительные свойства транзисторов VT1 и VT2 будем характеризовать коэффициентами передачи тока эмиттера a p и an или коэффициентами передачи тока базы bp и bn. Из схемы рис. 4,б следует, что управляющий ток Iу – это базовый ток IБ2 транзистора VT2.

Он вызывает инжекцию электронов через эмиттерный переход П3 и коллекторный ток VT2, будет

IK2 = anIЭ2 = bnIу.

Ток IK2 - базовый ток транзистора VT1 IБ1, он вызывает инжекцию дырок через эмиттерный переход П1, в результате чего коллекторный ток VT1

IK1= apIЭ1 = bpIБ1 = bpIK2 .

Ток IK1 в сумме с током Iу создают ток IБ2, то есть ток IK1 увеличивает ток управления и потому является током внутренней ПОС. При наличии ПОС управляющий сигнал становится:

IБ2 = Iу + IK1 = Iу + bpIK2 = Iу + bPbnIу. = Iу (1 + bPbn) (2.1)

Из (2.1) следует, что, сели bp > 1 и bn > 1, так, что bPbn >> 1, то в скобках (2.1) можно пренебречь единицей. Это означает, что при этом условии (bPbn >> 1) базовые токи будут быстро нарастать и оба транзистора окажутся в насыщении даже после отключения

управляющего тока. При этом коллекторный переход П2 будет смещен в прямом направлении, как и в обычном транзисторе в режиме насыщения.

 



Дата добавления: 2016-11-04; просмотров: 1787;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.