Основные свойства смазок
Прочностные свойства. Частицы загустителя образуют в масле структурный каркас, благодаря которому смазки в состоянии покоя обладают пределом прочности на сдвиг. Предел прочности - это минимальная нагрузка, при которой начинается разрушение каркаса и происходит необратимая деформация смазки - сдвиг. При приложении нагрузки, превышающей предел прочности, смазки деформируются, а при нагрузке ниже предела прочности они проявляют упругость подобно твёрдым телам. Благодаря пределу прочности смазки удерживаются на наклонных и вертикальных поверхностях, не вытекают из негерметизированных узлов трения. Кроме того, предел прочности определяет стартовые характеристики узлов трения, например, усилие, которое необходимо приложить к подшипнику в начале его вращения.
Все факторы, влияющие на формирование структуры смазок, влияют и на их прочность. К ним относятся:
- тип и концентрация загустителя;
- химический состав и свойства дисперсионной среды;
- состав и концентрация модификатора;
- режим приготовления смазок (температура и продолжительность нагревания, скорость охлаждения и т.д.).
При повторных нагружениях с уменьшением промежутка времени между этими нагружениями значение последовательно замеряемого предела прочности уменьшается.
С повышением температуры предел прочности смазок уменьшается. Температура, при которой предел прочности приближается к нулю, является истинной температурой перехода смазки из пластичного в жидкое состояние.
Для большинства смазок предел прочности при 20 0С лежит в пределах 100...1000 Па.
Измеряют предел прочности на пластометре К-2 или прочномере СК и др. приборах.
Вязкостные свойства. Вязкость определяет прокачиваемость смазок при низких температурах, стартовые характеристики и сопротивление вращению при установившихся режимах, а так же возможность заправки узлов трения. В отличии от масел вязкость смазок зависит не только от температуры, но и от градиента скорости сдвига. Поэтому при определении вязкости смазки необходимо знать не только температуру, при которой она определялась, но и скорость, с которой она продавливалась через капилляр. Поэтому вязкость смазки при определенной скорости перемещения и температуре называют эффективной вязкостью.
При увеличении скорости деформации вязкость резко снижается. С повышением температуры вязкость смазки так же резко снижается. Изменение вязкости от скорости деформации выражается вязкостно-температурной характеристикой, а от температуры - вязкостно-температурной характеристикой. При этом первая определяется при постоянной температуре, а вторая при постоянной скорости сдвига. По вязкостно-температурным свойствам смазки превосходят масла, поскольку значительная доля сопротивления течения смазок приходится на разрушение структурного каркаса, прочность которого мало зависит от температуры.
Увеличение концентрации и степени дисперсности загустителя приводит к повышению вязкости смазки. На вязкость смазки влияет также вязкость дисперсионной среды и технология приготовления.
Определяют вязкость с помощью капиллярных вискозиметров - АКВ-2 или АКВ-4, ротационного вискозиметра - ПВР-1 и др. приборов.
Механическая стабильность (тиксотропные превращения смазок). Изменение реологических свойств смазок при механическом разрушении и в процессе последующего отдыха - одна из важных характеристик. Тиксотропия - это способность дисперсных систем обратимо разжижаться при механическом воздействии и отвердевать при относительно длинном их пребывании в покое. Положительным качеством, обусловливаемым тиксотропией, является то, что при выбрасывании частиц разжиженной смазки из зоны трения и отложения их на неподвижных поверхностях они увеличивают вязкость и автоматически герметизируют узел трения от вытекания смазки. Однако сильно разупрочняющиеся при механическом воздействии смазки не способны удерживаться в узлах трения и вытекают из них при сравнительно небольших нагрузках. Чрезмерное упрочнение смазки после разрушения также является нежелательным, так как затрудняется запуск узла трения и поступления смазки к контактным поверхностям.
Механическая стабильность смазок зависит от типа загустителя, размеров, формы и прочности связи между дисперсными частицами. Уменьшение размеров частиц загустителя (до определенных пределов) способствует улучшению механической стабильности смазок. Смазки, имеющие мыльные волокна с большим отношением длины к диаметру, более стабильны. Увеличение концентрации загустителя также повышает механическую стабильность смазок. На тиксотропные превращения смазок влияют состав и свойства дисперсной среды, присутствие наполнителей и добавок.
Механическую стабильность определяют в ротационном приборе - тиксометре. Оценивают механическую стабильность специальными коэффициентами, которые рассчитывают по изменению прочности смазки на разрыв: Кр - индекс разрушения, Кв - индекс тиксотропного восстановления.
Пенетрация. Этот показатель до сих пор используется для оценки прочности и сравнения смазок друг с другом. Однако смазки, обладающие разными реологическими свойствами, могут иметь одинаковые числа пенетрации, и это приводит к неверным представлениям об эксплуатационных свойствах смазок. В таблице 18 классификация пластичных смазок по консистенции, предлагаемая Национальной ассоциацией пластичных смазок США NLGI.
Коллоидная стабильность. Способность удерживать масло, сопротивляться его выделению при хранении и эксплуатации характеризует коллоидную стабильность смазок. Выделение масла может быть самопроизвольным вследствие структурных изменений в смазке, например, под действием собственной массы, и может ускоряться или замедляться под действием температуры, давления и др. факторов. Слишком большое выделение масла в процессе работы - более 30 % - приводит к резкому упрочнению смазки и нарушает её нормальное поступление к контактируемым поверхностям.
Таблица 18
Дата добавления: 2021-01-26; просмотров: 369;