ТЕПЛООБМЕННЫЕ АППАРАТЫ
Теплообменным аппаратом называют устройство, предназначенное для нагревания или охлаждения теплоносителя. Кроме того, существуют теплообменники с внутренними тепловыделениями. Это разного типа электронагреватели и реакторы.
Теплообменники с двумя теплоносителями в зависимости от способа передачи теплоты
от одного теплоносителя к другому делят на несколько типов: рекуперативные, регенеративные, смесительные, с промежуточным теплоносителем.
В рекуперативных теплообменниках теплота передается от одного теплоносителя к другому через разделительную стенку любой конфигурации. Такие теплообменники выполняются из материалов с хорошей теплопроводностью. Наиболее распространены трубчатые теплообменники, в которых один теплоноситель движется в трубках, а другой –в межтрубном пространстве. В таких теплообменниках смешения теплоносителей не происходит и они широко применяются для самых разнообразных сочетаний греющего и нагреваемого веществ. Регенеративные теплообменники и теплообменники с промежуточным теплоносителемработают практически по одному и тому же принципу, заключающемуся в том, что теплота от одного теплоносителя к другому переносится с помощью какого-то третьего – вспомогательного вещества. Это вещество (промежуточный теплоноситель) нагревается в потоке горячего теплоносителя, а затем отдает аккумулированное тепло холодному теплоносителю. Для этого необходимо либо переносить сам промежуточный теплоноситель из одного потока в другой, либо периодически переключать потоки теплоносителей в теплообменнике периодического действия. Такие теплообменники нашли применение для высокотемпературного подогрева газов (>10000С). Иногда их выгодно использовать для охлаждения запыленных газов. В теплообменниках с промежуточным теплоносителем тепло от греющей среды к нагреваемой переносится потоком мелкодисперсного материала или жидкости. Такой теплообменник фактически состоит из двух.
Например, в установках разделения воздуха на азот и кислород используются теплообменники, состоящие из двух водяных скрубберов, в одном из которых вода охлаждается отбросным азотом, а во втором, нагреваясь, охлаждает воздух, поступающий в установку.
Иногда промежуточный теплоноситель передают на большие расстояния.
Так как в рекуперативных и регенеративных аппаратах процесс передачи теплоты неизбежно связан с поверхностью твердого тела, то их еще называют поверхностными.
Одним из интересных устройств, использующих в качестве промежуточного теплоносителя пар и его конденсат, является герметичная труба, заполненная частично жидкостью, а частично паром. Такое устройство, называемое тепловой трубой, способно передавать большие тепловые мощности. На горячем конце тепловой трубы за счет под- вода теплоты испаряется жидкость, а на холодном – конденсируется пар, отдавая выделившуюся теплоту. Конденсат возвращается в зону испарения либо самотеком, если холодный конец можно разместить выше горячего, либо за счет использования специальных фитилей, по которым жидкость движется под действием капиллярных сил в любом направлении, даже против сил тяжести (как спирт в спиртовке).
Тепловые трубы с самотечным возвратом конденсата известны давно.
Широкое распространение тепловых труб с фитилями началось недавно в связи с необходимостью отвода больших тепловых потоков от мощных, но малогабаритных полупроводниковых устройств. Практически незаменимы тепловые трубы с фитилями в космосе. Для охлаждения механических, электрических, радиотехнических устройств в земных условиях используется естественная конвекция. В космосе естественной конвекции быть не может, поскольку отсутствует сила тяжести, и нужны иные способы отвода теплоты. Тепловые трубы с фитилями могут работать и в невесомости. Они малогабаритны, не требуют затрат энергии на перекачку теплоносителя и при соответствующем подборе рабочего агента работают в широком интервале температур.
Широкие возможности открываются при использовании в качестве промежуточного теплоносителя мелкодисперсного материала, Который может работать в самых различных
установках (при высоких и низких температурах, в агрессивных средах и т.д.). Такой материал легко транспортируется потоком газа, в зависимости от условий может находиться во взвешенном, плотном или псевдоожиженном состоянии.
Наиболее простыми являются смесительные теплообменники, в которых смешиваются теплоносители, не требующие дальнейшего разделения. Для увеличения теплопередачи жидкости разбрызгивают или разбивают на мелкие струи. К таким теплообменникам относятся градирни, в которых горячая вода разбрызгивается и, соприкасаясь с холодным воздухом, охлаждается и вновь используется для охлаждения пара. Использование того или другого типа теплообменника в каждом конкретном случае должно быть обосновано технико-экономическими расчетами, поскольку каждый из них имеет свои достоинства и недостатки.
По схемам движения жидкости различают: прямоточные теплообменники, когда горячая и холодная жидкости движутся в одном направлении; противоточные, когда горячая и холодная жидкости движутся в разных направлениях; иногда горячая и холодная жидкости движутся перпендикулярно друг другу – поперечный ток. Кроме этих основных типов движения жидкостей в теплообменных аппаратах применяют более сложные схемы движения, включающие эти три основные схемы. (Рис2.10)Теплообменные аппараты имеют самые разнообразные назначения - паровые котлы, холодильные установки, конденсаторы, воздухоохладители и т.д. Теплообменные аппараты отличаются по формам, конструкции, по применению в них различных рабочих тел, но основные положения теплового расчета для них остаются общими
Рис.2.10 Типы движения жидкостей в теплообменных аппаратах
При проектировании новых теплообменных аппаратов целью теплового расчета является определение площади поверхности теплообменника, а если последняя известна, то целью расчета является определение конечных температур рабочих жидкостей.
Основными расчетными уравнениями теплообмена при стационарном режиме являются уравнение теплопередачи и уравнение теплового баланса.
Уравнение теплопередачи
Q = k F ∆t 2.96
где Q – тепловой поток, Вт; F- площадь поверхности теплообменного аппарата, м2; ∆t – температурный напор, 0С; k- средний коэффициент теплопередачи, Вт / (м2К).
Уравнение теплового баланса при условии отсутствия тепловых потерь и фазовых переходов
Q = m1∆i1 = m2∆i2 2.97
Или Q = m1c1( t1| - t1|| ) = m2c2 ( t2| - t2|| ) 2.98
Где - m1 и m2 – массовые расходы теплоносителей, кг/с; с1 и с2 - удельные теплоемкости жидкостей в интервале температур на входе и выходе по горячему и холодному теплоносителям, энтальпии по горячему и холодному теплоносителям, кДж/кг.
Произведение m cp = W называют водяным или условным эквивалентом.В тепловых аппаратах температуры горячего и холодного теплоносителей изменяются обратно пропорционально их условным эквивалентам. Соотношения между величинами условных эквивалентов горячего и холодного эквивалентов определяет наклон температурных кривых на графике изменения температур.
Если температура теплоносителей изменяется по прямой линии то средний температурный напор в аппарате равен разность среднеарифметических величин
2.99
Приведенное уравнение справедливо при небольших изменениях температур теплоносителей. При больших изменениях температур теплоносителей определяется среднелогарифмический температурный напор
∆tср = (∆tб - ∆tм ) /ℓn ∆tб / ∆tм 2.100
Где ∆tб и ∆tм разность температур на одном конце аппарата и на другом конце аппарата
Температурный напор для прямотока
2.101
Дата добавления: 2016-10-18; просмотров: 3731;