Кадровая синхронизация
Канал Е1 состоит из 24 отдельных каналов по 64 Кбит/с в каждом. Применяется разбиение передаваемой информации на кадры. Наибольшее распространение получили методы D4 и ESF (кроме того в линиях ЕЗ часто используется алгоритм Ml3).
Алгоритм D4
Кадр содержит 1 бит синхронизации и 24 байта данных (см. рис.5.3). Таким образом общая длина кадра составляет 193 бита.
Группа из 12 кадров снабжается специальной 12-битовой маской (см. рис), которую называют сигналом выравнивания кадра (frame alignment signal). Группа из 12 кадров называется суперкадром.
Алгоритм ESFАлгоритм формирования суперкадров ESF (Extended SuperFrame) отличается тем, что размер суперкадра был увеличен с 12 до 24 кадров. В таком суперкадре кз 24 служебных бит только 6 используются для целей синхронизации. Из оставшихся 18 бит — 6 служат для коррекции ошибок и 12 -для текущего контроля за состоянием линии.
Алгоритм М13Предназначен для каналов ТЗ (44,476 Мбит/с). Кадр содержит 4760 бит. Из них 56 бит используются для выравнивания кадра (кадровой синхронизации), коррекции ошибок и отслеживания состояния линии.
Импульсно-кодовая модуляция (ИКМ)
Каналы Т1 первоначально предназначались для передачи телефонных разговоров, но по цифровой линии.
По обычному телефону сигнал передается как аналоговый в диапазоне частот от 300 до 3400 гц. Для перевода аналогового сигнала в цифровую форму применяется импульсно-кодовая модуляция (ИКМ) — Pulse Code Modulation (PCM). Для этой цели вводится блок АЦП, который переводит амплитуду аналогового сигнала в цифровой отсчет из 8 бит. Частота снятия таких отсчетов была выбрана с учетом теоремы Найквиста (Nyquist). В соответствии с этой теоремой для адекватного преобразования сигнала из аналоговой формы в цифровую частота дискретизации должна в 2 раза превышать частоту дискретизируемого сигнала. Применительно к телефонным каналам была выбрана частота 8000 опросов в секунду. Таким образом цифровая линия должна обладать пропускной способностью 8 х 8000 = 64 Кбит/с.
МультиплексированиеВ линии Т1 собираются вместе 24 таких цифровых каналов по 64 Кбит/с. В итоге общая пропускная способность составляет 1,544 Мбит/с. Для объединения применяется временное мультиплексирование каналов – Time Division Multiplexing (TDM). Вся доступная полоса частот делится на элементарные временные интервалы по 125 мкс. Устройство монополизирует всю полосу частот на период такого элементарного интервала.
Благодаря мультиплексированию по линии Т1 можно передавать одновременно звуковые сигналы, цифровые данные и видеосигналы. В случае необходимости вся доступная пропускная способность 1,544 Мбит/с может быть монополизирована одним потоком данных.
Структура системыНа рисунке показана возможная структура оконечного устройства для работы по линии Т1. Здесь CSU– модуль обслуживания канала, a DSl – это модуль обслуживания данных.
Дробные линии Т1Пользователь может арендовать только часть канала Т1. При этом ему предоставляется возможность оплатить любое количество (от 1 до 24) канаов DSO (Digital Sygnal 0) по 64 Кбит/с.
Каналы E1В Европе 1TU– Международный союз по электросвязи – предложил несколько другую классификацию таких цифровых каналов. Основой является капал Е1, содержащий 30 каналов USO (по 64 Кбит/с) и дополнительно 1 канал для синхронизации и 1 канал для передачи служебной информации. Пропускная способность канала Е1 составляет 2,048 Мбит/с.
Среда передачиДля организации каналов типа Т1 могут использоваться различные среды. Например: две пары витых проводников – позволяют организовать канал Т1; в коаксиальном кабеле могут быть организованы 4 канала Т1; сверхвысокочастотный кабель позволяет разместить 8 линий Т1; оптоволоконный кабель может содержать до 24 линий Т1.
Сети ISDN
Цифровые сети интегрального обслуживания ISDN (Integrated Services Digital Network) находят широкое применение в качестве альтернативы подключения посредством каналов Т1/Е1. Разница заключается в основном в способе оплаты. За полный (или часть) канала Т1 взимается фиксированная (достаточно высокая) абонентская плата. В сетях же ISDN оплата взимается только за время подключения.
Технология ISDN позволяет одновременно передавать голосовые и цифровые данные, обеспечивает высокоскоростное подключение к глобальным сетям. Разработана была эта технология для того, чтобы обеспечить интегральные потребности небольшого офиса.
Аналогично каналам Т1 эта технология базируется на использовании цифрового канала 64 Кбит/с. Аналоговые (голосовые) данные предварительно дискретизируются (производится семплирование - sampling) 8000 раз в секунду. Каждый отсчет представляет собой 8 бит информации. То есть используется ИКМ.
В-каналОсновным компонентом любой линии ISDN является однонаправленный В-канал с пропускной способностью 64 Кбит/с. По нему могут передаваться оцифрованные аудио- или видеоданные или собственно цифровые данные.
Далее эти В-каналы группируются по 2, 23 и более каналов. С целью управления передачей в состав такой группы включается D-канал.
D-каналИспользуется для передачи служебной информации. Это, например, сигналы установления и разрыва соединения. Вся же полоса В-канала предназначается только для передачи полезной информации.
Имеются две стандартные для ISDN конфигурации каналов: BRI и PRI/
Интерфейс BRIЭто логическое объединение двух В-каналов по 64 Кбит/с и одного D-канала с пропускной способностью 16 Кбит/с. BRI (Basic Rate Interface) -I интерфейс передачи с номинальной скоростью.
Интерфейс BRJ является конфигурацией оптимальной для удаленных пользователей и небольших офисов. Общая его пропускная способность- 128 Кбит/с, а D-канал используется только для передачи служебной информации BRI позволяет подключить до 8 устройств (телефонных, цифровых и видео).
Для обмена по D-каналу используется протокол SS7 (Signalling System Number 7).
Интерфейс PRIPRI (Primary Rate Interface) - интерфейс передачи с базовой скоростью. Этот интерфейс соответствует максимальной скорости передачи по линии Т1. Конфигурация PRI состоит из 23 каналов по 64 Кбит/с (В-каналов) и одного D-канала с пропускной способностью 64 Кбит/с. Следовательно пользователь может вести передачу со скоростью 1,472 Мбит/с.
В европейских линиях ISDN конфигурации PRI соответствует 30 В-каналов (т.к. Е1 содержит именно столько каналов передачи полезной информации).
Подключение пользователяНа рисунке 5.5 приведена типичная конфигурация аппаратных средств абонентского комплекса ISDN.
Устройство NT1 (Network Terminator 1) используется для подключения абонента к цифровому каналу.
Устройство NT2 (Network Terminator 2) занимает промежуточный уровень между NT1 и любым терминальным оборудованием. Это могут быть маршрутизаторы сетей ISDN и цифровые офисные АТС.
Терминальным устройством первого типа ТЕ1 (Terminal Equipment 1) считается пользовательское оборудование, которое в состоянии подключаться к устройствам типа NT. Это, например, рабочие станции ISDN, факсимильный аппарат, телефоны ISDN.K терминальным устройствам второго типа ТЕ2 (Terminal Equipment 2) относится все оборудование, которое не может непосредственно подключаться к NT2 (аналоговые телефоны, ПК и т.д.), а требует для этого применения специального терминального адаптера ТА (Terminal Adapter).
АппаратураПроводка делается скрученным медным проводом (витая пара) UTP класса не менее 3 (она обеспечивает передачу со скоростью до ЮМбит/с). Для интерфейса BR1 требуется одна пара UTP, а для интерфейса PRI — 2 пары UTP.
Устройство NT1 достаточно простое, поэтому его часто интегрируют в терминальное оборудование.
Аппаратура ISDN у пользователя может быть встроенной или автономной. Встроенное устройство может быть и комбинированным, т.е. содержать NT1 и несколько терминальных адаптеров ТА. Внешние терминальные адаптеры внешне выглядят аналогично модему, поэтому их часто называют ISDN-модемами(хотя там нет ни модуляции, ни демодуляции). Очень часто используют еще один тип аппаратуры - маршрутизаторы ISDN - Ethernet. Они выполняют и роль моста между каналом и локальной сетью, т.е. это router-bridge.
Н-каналыITU выпустил стандарты на Н-каналы ISDN. Они включают пять конфигураций, начиная с НО (включает 6 В-каналов - пропускная способность 384 Кбит/с, предназначен для поддержки видеоконференций) и заканчивая каналом Н4 (включает 2112 D-каналов, пропускная способность - 135 Мбит/с, ориентирован на широковещательную передачу видео- и аудиоданных).
Услуги ISDNISDN-канал может обеспечивать множество дополнительных услуг, например: • конференц-связь; • пересылка входящих звонков на другой номер телефона; • определение номера вызывающего абонента; • организация рабочих групп и т. д.
Сети Frame Relay
Сети, использующие протоколы Х.25, оказались надежными, но недостаточно высокоскоростными. В связи сэтим были предложены модификации, ориентированные на очень высокие скорости передачи – это, в частности, сети Frame Relay и AТМ.
Родоначальником технологии Frame Relay – ретрансляции кадров – была в начале 90-х годов американская компания WILTEL, которая имела обширную сеть оптоволоконных линий, проложенных вдоль железных дорог. Технология Frame Relay в отличие от Х.25 позволила обеспечить скорости передачи, совместимые с каналами Т1 (1,5 Мбит/с) и ТЗ (45 Мбит/с), тогда как у Х.25 это была обычно скорость 64 Кбит/с.
Формат кадра Суть этой технологии заключается в отказе от 3-его(сетевого) уровня Х.25. Ограничиваются использованием 2-го (канального) уровня, где передача ведется кадрами. Видоизменяется только заголовок кадра:
Заголовок кадра Frame Relay содержит:
• 10-битовое поле DLCI– идентификатора канала передачи данных. Это поле используется маршрутизаторами для нахождения узла назначения, т.е. это информация для ретрансляции кадра.
• Из остальных шести бит заголовка:
• 3 бита выполняют роль флагов перегрузки;
• 1 бит – позволяет снизить приоритет кадра (называется битом DE);
• 2 бита – зарезервировано.
Скорость передачи
Скорость передачи согласуется с провайдером в виде трех параметров:
- CIR– согласованная скорость передачи;
- Bс – согласованная величина расширения трафика;
- Be – предельная величина расширения трафика.
Трафик объемом Be может приниматься сетью только ограниченный промежуток времени.
Передача графика объемом Вс допускается, только если загрузка сети в среднем не превысит согласованного значения CIR.
В случае превышения нагрузки пакет может быть либо отброшен маршрутизатором, или же в нем устанавливается в «1» бит DE (снижения приоритета), а и этом случае такой пакет разрешается при необходимости уничтожить любому следующему но пути следования маршрутизатору.
Типы каналов
Технология Frame Relay может работать на двух типах каналов:
- PVC – постоянный виртуальный канал;
- SVC– коммутируемый виртуальный канал.
Каналы PVC определяются на этапе конфигурации системы и гарантируют, что пакеты всегда будут доставляться по одному и тому же маршруту. Каналы SVC устанавливаются каждый раз в начале передачи (на этапе установления соединения), что позволяет избегать неисправных участков сети.
Зашита от ошибок
В сети Frame Relay производится проверка правильности кадра (с помощью анализа поля FCS)и, если обнаружены ошибки, кадр стирается. Однако повторная передача таких стертых кадров при этом не запрашивается. Считается, что за сборку сообщения и запрос недоставленных кадров должен отвечать протокол более высокого уровня – транспортный (отвечающий за межконцевую доставку). Таким образом эти сети ориентированы на применение высококачественных оптоволоконных каналов, в которых ошибки достаточно редки, а поэтому низка и вероятность повторных передач пакета.
Сети АТМ
Сети ATM были разработаны в качестве еще одной альтернативы сетям Х.25. Скорость передачи в этой сети находится и диапазоне от 25,5 Мбит/с до 2,488 Гбит/с. В качестве среды передачи могут использоваться различные носители, начиная с неэкранированной витой пары UTР класса 3 вплоть до оптоволоконных каналов.
Эта технология известна также под названием Fast Packet Switching –быстрая коммутация пакетов.
Высокие скорости передачи обеспечиваются за счет:
1. Фиксированного размера кадра – 53 байта
2. Отсутствия каких-либо мер по обеспечению правильности передачи. Эта задача переносится на более высокие протокольные уровни (транспортный).
Технология ATM относится по концепции OSI ко второму (канальному) уровню. Кадры в ATM называются ячейками (cell). Формат такой ячейки показан на левом рисунке.
Заголовок ячейки (5 байт) содержит:
- идентификатор виртуального пути – VPI (Virtual Path Identifier);
- идентификатор виртуального канала – VCI (Virtual Channel Identifier);
- идентификатор типа данных (3 бита);
- поле приоритета потери ячейки (1 бит);
- поле контроля ошибок в заголовке (8 бит) – это сумма по mod 2 байтов заголовка. Протоколы более высокого уровня разрезают свои сообщения на сегменты
по 48 байт и помещаютих в поле информации ячейки.
Технология ATM поддерживает 2 типа каналов (аналогично сетям Frame
Relay):
• PVC – постоянные виртуальные каналы;
• SVC– коммутируемые виртуальные каналы.
На канальном уровне ATM выделяются 2 подуровня (см. рис вверху справа): непосредственно уровень ATM и уровень адаптации ATM.
Уровень адаптации ATM (ATM Adaptation Layer) – AAL – реализует один из
пяти режимов передачи:
AAL1 – характеризуется постоянной скоростью передачи (CBR) и синхронным трафиком. Ориентирован па передачу речи и видеоизображений.
AAL2 – тоже поддерживает синхронную передачу, но использует переменную битовую скорость (VDR). Oн пока, к сожалению, еще не реализован.
AAL3/AAL4 (объединены в единый протокол) – ориентированы на переменную битовую скорость (VBR). Синхронизация не обеспечивается. AAL4 отличается тем, что не требует предварительного установления соединения.
AAL5 – аналогичен AAL3, только содержит меньший объем служебной инфы.
По протоколам AAL1 и AAL2 передаются порции по 48 байт информации (1 байт – служебный). Протоколы AAL3 – AAL5 предполагают передачу блоков (разрезанных на сегменты) размером до 65536 байт.
X25
Рекомендация X.25 описывает три уровня протоколов - физический, уровень звена передачи данных и сетевой. Физический уровень описывает уровни сигналов и логику взаимодействия на уровне физического интерфейса. Те из читателей, которым приходилось например подключать модем к последовательному порту персонального компьютера (интерфейс RS-232/V.24) имеют представление об этом уровне. Второй уровень (LAP/LAPB), с теми или иными модификациями, также достаточно широко представлен сейчас в оборудовании массового спроса: в оборудовании модемов, например, - протоколами группы MNP, отвечающими за защиту от ошибок при передаче информации по каналу связи, а также в локальных сетях на уровне LLC. Второй уровень протоколов отвечает за эффективную и надежную передачу данных в соединении "точка-точка", т.е. между соседними узлами сети X.25. Данным протоколом обеспечивается защита от ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова принимать данные, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, данный протокол содержит параметры, меняя значения которых, можно получить оптимальный по скорости передачи режим в зависимости от протяженности канала между двумя точками (времени задержки в канале) и качества канала (вероятности искажения информации при передачи). Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" ("frame"). Кадром называется порция информации (битов), организованная определенным образом. Начинает кадр флаг, т.е. последовательность битов строго определенного вида, являющаяся разделителем между кадрами. Затем идет поле адреса, которая в случае двухточечного соединения сводится к адресу "А" или адресу "B". Далее идут поле типа кадра, которое указывает, несет ли кадр в себе информацию, либо является чисто служебным, т.е. например тормозит поток информации, либо извещает передающую сторону о приеме/неприеме предыдущего кадра. В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении определенного порогового значения, нумерация опять начинается с нуля. И наконец заканчивается кадр проверочной последовательностью. Последовательность подсчитывается по определенным правилам при передаче кадра. По этой последовательности на приеме происходит поверка, не произошло ли искажения информации при передаче кадра. При настройке параметров протокола к физическим характеристикам линии можно менять длину кадра. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества, то лучше работать более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, можно менять число кадров которое передающая сторона посылает, не ожидая подтверждения от принимающей стороны.
Этот параметр связан с т.н. "модулем нумерации", т.е. значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть равно 8 (для тех каналов, задержка передачи информации в которых не слишком велика) либо 128 (для спутниковых каналов например, когда задержка при передаче информации по каналу велика). И наконец, третий уровень протоколов - "сетевой". Этот уровень наиболее интересен в контексте обсуждения сетей X.25, так как именно он определяет в первую очередь специфику этих сетей.
Функционально данный протокол отвечает в первую очередь за маршрутизацию в сети передачи данных X.25, за доведение информации от "точки входа" в сеть до "точки выхода" из нее. На своем уровне протокол третьего уровня также структурирует информацию, т.е. разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" ("packet"). Структура пакета во многом аналогична структуре кадра. В пакете имеется свой модуль нумерации, свои поля адреса, типа пакета, своя контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. В первую очередь это касается поля адреса, которое в пакете состоит из 15 цифр. Это поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру
СЕТЬ ИНТЕРНЕТ
Интернет - это все сети, которые взаимодействуя с помощью протокола IP, образуют "бесшовную" сеть для своих пользователей. В настоящее время в Интернет входят десятки тысяч сетей и их число постоянно увеличивается. В 1980 году на Internet было 200 компьютеров. Число подключенных к сети компьютеров продолжает увеличиваться примерно на 15% в месяц. Масштабы Internet существенно увеличились после подключения к ней коммерческих сетей. Это были такие сети, как America Online, CompuServe, Prodigy, Delphi, GEuie, BIX и т.д..
Управление ИнтернетНаправление развития Internet определяет "Общество Internet" (ISOC -Internet Society). Это организация, которая работает на общественных началах; ее целью является содействие глобальному информационному обмену через Internet. Она назначает Совет старейшин, который отвечает за техническое Руководство и ориентацию Internet.
Совет старейшин IAB - (Internet Architecture Board - совет по архитектуре Internet) регулярно собирается для утверждения стандартов и распределения Ресурсов. Наличие стандартов должно способствовать объединению в сети компьютеров разных платформ (Sun, Macintosh, IBM и т.д.). Каждый компьютер в сети имеет свой уникальный 32-разрядный адрес. Правила присвоения адресов определяет IAB.
Имеется еще один общественный орган - Инженерная комиссия IETF (Internet Engineering Task Force). Она собирается регулярно для обсуждения технических и организационных вопросов, а при необходимости формирует рабочие группы.
Адресация интернет. Классы адресов.
Интернет – это сеть с коммутацией пакетов. В одном пакете может быть послано до 65535 байт информации. Каждый пакет (IP-пакет) снабжается адресами отправителя и получателя (рис.1).
В наиболее распространенной в настоящее время версии 4 протокола (IPv4) на каждый из адресов отводится поле в 32 бита. Однако, для удобства использования каждый байт адреса записывается в виде десятичной цифры (от 0 до 255). Каждая группа отделяется от следующей точкой (.).
Так удобнее пользоваться символическими именами в дальнейшем была внедрена доменная иерархическая система имен, допускающая произвольное количество составных частей
Такая система аналогична иерархии имен файлов. Дерево начинается с точки (.), обозначающей корень. Затем идут, отделяемые точкой, части символической записи имени.
Количество уровней не лимитируется, но редко бывает более 5. Например:
www.microsoft.com. asoiu.eltech.ru.
Совокупность имен, у которых старшие части совпадают, образуют домен (domain). Компьютеры, входящие в домен, могут иметь совершенно различные IP-адреса. Например, домен mgu.ru может содержать компьютеры с адресами:
132.13.34.15 201.22.100.33 14.0.0.6
Корневой домен (1-го уровня) управляется в Интернет центром InterNIC (центр сетевой информации). Для этого разработан стандарт ISO3266. В соответствии с ним введены 2-х или 3-х-буквенные аббревиатуры для стран и различных типов организаций (левый рис).
Для верхнего доменного уровня было изначально введено 6 групп высшего уровня: edu – учебные заведения (США); gov – правительственные учреждения США (кроме военных); com – коммерческие организации; mil – военные учреждения(США); org – прочие организации; net – сетевые ресурсы.
Когда Интернет стала международной сетью были добавлены группы для стран-участников, например: ca –Канада; ru – Россия; fr – Франция и т.д.
Каждый домен администрируется отдельной организацией, которая разбивает его на поддомены. Например, в России ( для домена ru) это РосНИИРОС.
Система доменных имен DNS
Встает задача отображения доменных имен в IP-адреса. На раннем этапе развития Internet на каждом хосте вручную создавался текстовый файл "hosts", который состоял из пар записей <IP-address — Domain Name>, например:
102.54.94.97-nick.bgs.com.
По мере роста сети появилась необходимость введения специальной службы – DNS (Domain Name System) – системы доменных имен. Служба DNS использует в- своей работе протокол типа «клиент-сервер» (client – server). DNS-серверы содержат распределенную базу отображений. DNS-клиент обращаются к этим серверам с запросами об отображении доменного имени в IP-адрес.
Каждый DNS-сервер кроме таблицы отображения имен содержит ссылки на DNS-серверы своих поддоменов. DNS-серверы применяют (для сокращения времени поиска) процедуру кэширования проходящих через них ответов. Сведения сохраняются на срок от нескольких часов до нескольких дней.
DNS-клиенты используют рекурсивную процедуру разрешения DNS-имен. Она следующая (вверху правый рис):
· DNS-клиент запрашивает локальный DNS-сервер;
· локальный сервер (если он не знает ответа) обращается к корневому (root) серверу;
· корневой сервер делает последовательные запросы к DNS-серверам доменов, пока не находит нужный адрес;
адрес передается локальному серверу, а от него к DNS-клиенту.
Дата добавления: 2016-10-07; просмотров: 3647;