Распад протеогликанов


Распад протеогликанов - физиологический процесс, заключающийся в регулярном обновлении внеклеточных и внутриклеточных макромолекул. В деградации протеогликанов участвуют протеиназы и гликозидазы. Вначале коровый и связующие белки подвергаются воздействию свободных радикалов и в межклеточном матриксе гидролизуются матриксными металлопротеиназами - коллагеназой, желатиназой, стромелизином. Протеиназы расщепляют коровый белок, а гликозидазы гидролизуют цепи гликозаминогликанов и олигосахаридов. Все протеогликаны, содержащие цепи хондроитинсульфата, дерматансульфата, гепарансульфата и кератансульфата, первоначально расщепляются на фрагменты. Затем фрагменты протеогликанов захватываются бластными клетками и подвергаются внутриклеточной деградации. Эти фрагменты могут также с лимфой и кровью переноситься в печень. В гепатоцитах происходит их дальнейший гидролиз, в котором участвуют аспартильные, сериновые и другие протеиназы.

120. Строение и химический состав дентина. Плащевой и интертубулярный дентины. Коллагеновые и неколлагеновые (специфические) белки дентина. Понятие о претубулярном, вторичном и репаративном дентинах.

Дентин состоит из основного вещества, пронизанного дентинными канальцами, в которых располагаются отростки одонтобластов. Дентинные канальцы – тонкие трубочки, идущие радиально от пульпы зуба к эмали или цементу. Просвет канальца заполнен отростком одонтобласта, который окружен дентинной жидкостью. Основное вещество дентина – обызвествленная ткань с большим количеством коллагеновых волокон.

Состав дентина:

Минеральные соли (70-72%):

· гидроксиапатит (свыше 60%)

· углекислый кальций (1%)

· углекислый натрий (1,4%)

Органическая основа (20-26%):

· белок (коллаген I типа)

· углеводы

· жиры (2%)

Вода(10%)

Наружный (плащевой) дентин.

-Самый твёрдый слой. Коллагеновые волокна располагаются радиально, в виде конусовидных пучков (волокна Корфа), верхушки которых идут внутрь

-волокна Корфа располагются параллельно дентинным канальцам.

-Волокна минерализуются.

Интертубулярный дентин:

-Располагается между дентинными канальцами.

-Средняя степень минерализации дентинных волокон.

-Кристаллы гидроксиаппатита ориентированы вдоль волокон.

Белки дентина.

нерастворимые (90%) растворимые (10%)

– коллаген – собственно белки дентина

– структурные гликопротеины – сывороточные белки

Нерастворимые протеины в основном представлены коллагеном. Последний имеет особое строение, он не набухает в воде, устойчив к воздействию коллагеназы, содержит до 12% гидроксипролина, 2,0-3,5% лизина и гидроксилизина. В его составе также присутствует большое количество глутаминовой и аспарагиновой кислот, аргинина, лейцина, изолейцина и валина, мало циклических аминокислот, отсутствует триптофан.

Растворимые – это белки крови, проникающие через кровеносные сосуды. Они представлены сывороточными альбуминами, b и g-глобулинами, ферментами гликолиза, цикла трикарбоновых кислот, фосфатазами и трансаминазами. Из собственных белков дентина следует упомянуть Са-связывающие белки с молекулярной массой 11 кДа.

Первичный дентин – образуется в процессе развития зуба, вторичный дентин – образуется в течение жизни человека, третичный (иррегулярный, травматический, репаративный) дентин – образуется под действием различных раздражающих факторов. В норме с возрастом толщина дентина увеличивается, а объем полости зуба уменьшается.

121. Особенности минерализации дентина. Центры нуклеации. Роль предентина и Ca2+-АТФазы. Характер кристаллов гидроксиапатита.

В основе минерализации костного скелета и зубных тканей позвоночных лежит образование кристаллов с участием фосфатов кальция. В патологических условиях свыше 20 других солей могут подвергаться кристаллизации в составе зубных, мочевых, жёлчных камней.

Внеклеточная жидкость, из которой происходит осаждение соли, представляет пересыщенный раствор фосфата кальция. Процесс осаждения можно разделить на 2 стадии: вначале идёт нуклеация, т.е. образование плотного остатка с точечными ядрами кристаллов, а затем – рост кристаллов из этого ядра.

Различают 2 типа нуклеации.

• Если нуклеация идёт в пересыщенном растворе без участия другой фазы, то её называют гомогенной. Гомогенная нуклеация характерна для первичных этапов формирования зубного дентина.

• Если нуклеацию инициирует другая фаза (часто твердая фаза), то процесс называют гетерогенной нуклеацией. Второй механизм встречается чаще, поскольку трудно создать чисто однофазный раствор.

В обоих случаях формируются небольшие ядра кристаллов 0,5–2,0 нм в диаметре.

122. Строение, особенности химического состава, минерализации и обмена цемента.

Цемент (cementum) – это прослойка ткани, покрывающая корень зуба. По химическому составу он состоит из 22% органических веществ, 32% воды; остальную часть цемента составляют минеральные вещества, главным образом соли кальция. Цемент напоминает костную ткань. В отличие от кости цемент не имеет кровеносных сосудов.

Из неорганических соединений преобладают гидроксиапатиты, а также соли фосфата и карбоната кальция, органические вещества представлены главным образом коллагеном, а также гликозамингликанами, липидами. В костной ткани содержится большое количество цитрата.

Различают клеточный цемент, расположенный в верхушечной части корня и в области его бифуркации, и бесклеточный, покрывающий остальную часть корня. Клеточный цемент содержит цементоциты, в которых выявляются достаточно большое количество РНК, гликогена и ферментов. Бесклеточный цемент не имеет цементоцитов и состоит из коллагеновых волокон и аморфного склеивающего вещества. Цемент тесно связан с дентином.

В цементе содержится до 1% белков, регулирующих остеогенез. К ним относятся морфогены, митогены, факторы хемотаксиса и хемоаттракции.

Морфогены – это гликопротеиды, выделяющиеся из разрушающейся костной ткани и действующие на полипотентные клетки, вызывая в нужном направлении их дифференцировку. Важнейший из них – морфогенетический белок кости, состоящий из четырех субъединиц с общей молекулярной массой 75,5 кДа. Остеогенез под влиянием этого белка протекает по энхондальному типу, т.е. сначала образуется хрящ, а из него затем кость.

Митогены – чаще всего гликофосфопротеиды – действуют на преддифференцированные клетки, сохранившие способность к делению, увеличивают их митотическую активность. В основе биохимического механизма действия лежит инициация репликации ДНК.

Факторы хемотаксиса и хемоаттракции – это гликопротеиды, определяющие движение и прикрепление новообразованных структур под действием морфо- и митогенов. Наиболее известны из них: фибронектин, остеонектин и остекальцин. За счет первого осуществляется взаимодействие между клетками и субстратами, этот белок способствует прикреплению ткани десны к челюсти. Остеонектин (кислый белок, богатый цистеином), являясь продуктом остеобластов, определяет миграцию преостеобластов и фиксацию апатитов на коллагене, то есть при его помощи происходит связывание минерального компонента с коллагеном. Остеокальцин – белок, маркирующий участки кости, которые должны подвергаться резорбции (распаду). Этот протеин содержит g-карбоксиглутаминовую кислоту и является витамин-К-зависимым, он вырабатывается в старом участке кости, к которому прикрепляется остеокласт и происходит разрушение этого участка.

123. Эмаль зуба. Химический состав эмали: разновидности апатитов в эмалевых призмах. Особенности состава органического матрикса эмали.

Зубная эмаль (или просто эмаль) — внешняя защитная оболочка коронковой части зубов человека. Эмаль является самой твёрдой тканью в организме человека, что объясняется высоким содержанием неорганических веществ — до 97 %.

Содержит 95% минеральных вещ-в, 1%-органических, 4%-воды.
Минеральный компонент эмали представлен кристаллами гидроксиапатитов, карбонатапатитов, хлорапатитов, фторапатитов, цитратапатитов - кристаллиты. Из них превалируют более 70% гидроксиапатитов. Каждая кристаллическая решетка состоит из 18 ионов.

Органический матрикс представлен небольшим количеством углеводов и липидов, а также специфическими для данной ткани белками. Они находятся между кристаллами апатита в виде пучков, пластинок или спирали. Количество липидов, в основном глицерофосфолипидов, достигает 540-570 мг на 100 г ткани. Помимо липидов в эмали содержатся следы углеводов, преимущественно галактозы, глюкозы, маннозы и глюкуроновой кислоты. Также определяется цитрат в количестве 0,1%.

Органические компоненты эмали
Основные белки:

1) амелогениен 90%
2) амелобластин
3) энамелин
Амелогенин: состоит из 1 полипептидной цепи. Содержит до 200 аминокислотных остатков. После спонтанного протеолиза образует нано сферы диаметром 20 нм. На поверхности нано сфер содержатся карбоксильные группы аспорагиновой и глутаминовой аминокислот. Это необходимо для связи с гидроксильными пептидами.
Амилобластин: В 2 раза крупнее амелогенина . Имеет биполярную структуру: n-кольцевой фрагмент содержит аминокислоту и положительными зарядами и накапливается в оболочке эмалевых призм. С-концевые фрагменты содержат аминокислоты с отрицат зарядом и находятся в межпризматических пространствах и призмах.
Энамелин: Крупнее в 5-6 раз амелогенина, содержит фосфатные группы, за счет которых плотно связывается с кристаллами гидроксиапптитов. НО при созревании эмали, они исчесзают.

124. Минерализация эмали. Роль эмалевых белков и протеолиза в биогенезе эмали. Роль слюны в процессах деминерализации и реминерализации эмали.

Формирование эмали называется амелогенез. Выделяют три стадии:

1 стадия- стадия секреции и первичной минерализации эмали.Энамелобласты секретируют органическую основу эмали, которая сразу подвергается первичной минерализации.

2 стадия – стадия созревания ( вторичной минерализации) за счет удаления органического матрикса и увеличения доли минеральных веществ.

3 стадия- стадия окончательного созревания (третичная минерализация)- осуществляется только после прорезывания зуба. Завершение минерализации осуществляется преимущественно поступлением ионов из слюны.

Белки эмали: Важнейшей составной частью белка является коллаген. Благодаря проведению тончайшего аминокислотного анализа стало возможным определить структуру коллагена зубов. Гидролизат коллагена содержит 18 аминокислот, в том числе 26% глицина, 15% пролина и 14% гидроксипролина. Различия в структуре коллагена определенных тканей заключаются в пропорциональном соотношении лизина и гидроксилизина, хотя количество этих аминокислот остается постоянным (3—4%). Коллаген принадлежит к группе волокнистых белков, его молекула построена из цепочек аминокислот (две цепочки одинаковые, а третья отличается по составу аминокислот). Белки эмали в сформированных постоянных зубах образуют тонкую сетку и представлены энамелинами и амелогенинами в соот- ношении 1:1. Кроме этих белков в эмали определяются отдельные свободные аминокислоты (глицин, валин, пролин, гистидин, лизин и аргинин) и пептиды. Считают, что белковая матрица, окружающая апатиты, предотвращает контакт кислот с ними и тем самым смягчает воздействие этих кислот на кристаллы гидроксиапатита.

Три главных функции слюны и слюнных желез в процессах минерализации, деминерализации и реминерализации эмали зубов:
В нормальном, здоровом организме реминерализация зубов происходит постоянно, наравне с деминерализацией. Оба процесса вполне естественны, деминерализация происходит при приеме пищи, особенно с повышенным содержанием кислот и сахара, а главную роль в восполнении минерального содержания эмали играет слюна. Она снижает уровень кислотности и, благодаря своему составу, замещает разрушенные ранее минералы. Если же организм не совсем здоров, кислотно-щелочной баланс нарушается, и слюна перестает выполнять свою природную роль восстановителя. Минералы разрушаются, образуется благодарная среда для болезнетворных бактерий и начинает стремительно развиваться кариес.

125. Пелликула: особенности химического состава, биологическая роль.

Пелликула-это тонкая, прозрачная пленка, углеводно-белковой природы. В строении обнаруживается 3 слоя: 2 на поверхности эмали, а третий в поверхностном слое эмали. Пелликула покрывает зубной налет.

Характерный признак пелликулы - зубчатый край и нишы, в которых развиваются микроорганизмы. Толщина суточной пелликулы 2 –4 мкм. В пелликуле много глутаминовой кислоты, аланина, сиаловой кислоты, аминосахаров. Защищает твердые ткани зуба от воздействия кислот, но способствует фиксации микроорганизмов.

Пелликула обладает избирательной проницаемостью и обеспечивает процессы диффузии ионов в поверхностный слой эмали, а также защищает эмаль зубов от воздействия химических агентов. Зубная пелликула представляет собой барьер, через который регулируются процессы минерализации и деминерализации эмали, а также осуществляется контроль за составом микробной флоры, участвующей в образовании зубного налёта. После механической очистки пелликула восстанавливается на поверхности эмали в течение нескольких часов.

126. Биохимия зубного налета. Органические и неорганические компоненты зубного налета.

Зубной налет — это плотное образование, которое состоит из бактерий, расположенных внутри матрицы. Матрица налета образуется из белков, полисахаридов, липидов и некоторых неорганических веществ (кальций, фосфаты, магний, калий, натрий и др.).

Органический матрикс зубного налёта включает синтезируемые особыми штаммами микроорганизмов специфические полисахариды: декстран-глюкан (из глюкозы) и леван-фруктан (из фруктозы) с молекулярной массой 5-20 млн. а также простые белки, гликозаминогликаны и гликопротеины, которые осаждаются из слюны. В составе зубного налёта обнаружено более 50 видов ферментов, большинство из них микробного происхождения. В патогенном действии зубного налёта важную роль играют протеолитические ферменты, а также гиалуронидаза, нейраминидаза, ферменты гликолиза, цикла трикарбоновых кислот и пентозофосфатного цикла, декстраназа, которая вырабатывается стрептококками и отщепляет глюкозу от декстрана-глюкана в слабо кислой среде. Зубной налёт содержит в своём составе лизоцим, 70% которого сосредоточено в осадочной фракции. Оптимум рН лизоцима зубного налёта равен 5,1. Его активность снижается по мере созревания зубной бляшки. Зубной налёт может выполнять роль полупроницаемой мембраны, которая обладает избирательной проницаемостью.

Зубной налёт на 78-80% состоит из воды. Известно, что на 1 мг сухой массы зубного налёта приходится около 3,4 мкг кальция, 8,4 мкг фосфора, 4,2 мкг калия и 1,3 мкг натрия. Помимо макроэлементов в зубном налёте присутствуют микроэлементы, которые представлены ионами Ca2+, Sr2+, Fe3+, Mg3+, Mn3+, F- и др. Содержание фтора в зубном налёте может быть в десятки и даже в сотни раз больше, чем в слюне (6-180 мкг/г).

Зубной налет образуется путем адсорбции микроорганизмов на поверхности эмали и увеличивается вследствие постоянного наслаивания новых бактерий, причем в определенной последовательности: вначале кокковая флора, затем палочковидные и нитевидные бактерии. По мере роста налета и увеличения его толщины начинают преобладать анаэробные формы бактерий. В нормальной микрофлоре полости рта особо выделяются лактобациллы, актиномицеты, Str. salivarius, Str. sanguis, Str. mutans, которые при определенных условиях (низком значении рН и высоком содержании сахарозы) приобретают выраженные кариесогенные свойства.

Интенсивность кариеса и гингивита у молодых людей находится в прямой зависимости от количества и распределения налета на зубах. Чаще всего зубной налет располагается над десной, в пришеечной области, в фиссурах. Он представляет собой пористую структуру, что позволяет углеводам свободно проникать в его глубокие слои. При приеме мягкой пищи и употреблении значительного количества легко ферментируемых углеводов происходит значительный и быстрый рост налета.

 

127. Патогенное значение бактериального налета в развитии кариеса. Факторы, способствующие развитию кариеса.

Зубной налет — это плотное образование, которое состоит из бактерий, расположенных внутри мат­рицы. Матрица налета образуется из белков, полисахаридов, липидов и некоторых неорганических веществ (кальций, фосфаты, магний, калий, натрий и др.).

Зубной налет образуется путем адсорбции микроорганизмов на поверхности эмали и увеличивается вследствие постоянного наслаивания новых бактерий, причем в определенной последовательности: вначале кокковая флора, затем палочковидные и нитевидные бактерии. По мере роста налета и увеличения его толщины начинают преобладать анаэробные формы бактерий. В нормальной микрофлоре полости рта особо выделяются лактобациллы, актиномицеты, которые при определенных условиях (низком значении рН и высоком содержании сахарозы) приобретают выраженные кариесогенные свойства.

Интенсивность кариеса и гингивита у молодых людей находится в прямой зависимости от количества и распределения налета на зубах. Чаще всего зубной налет располагается над десной, в пришеечной области, в фиссурах. Он представляет собой пористую структуру, что позволяет углеводам свободно проникать в его глубокие слои. При приеме мягкой пищи и употреблении значительного количества легко ферментируемых углеводов происходит значительный и быстрый рост налета.

КАРИЕС – патологический процесс в твердых тканях зуба, возникающий после прорезывания зубов и заключающийся в очаговой деминерализации эмали с последующим образованием полости.



Дата добавления: 2022-04-12; просмотров: 154;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.