Равноточных измерений


Арифметическая средина результатов равноточных измерений. Пусть имеем результаты многократных равноточных измерений одной величины: l1, l2, …, ln. Рассмотрим их среднее арифметическое

. (5.7)

Из (5.1) следует li= Х + Δi (i = 1, 2, … n). Поэтому напишем

= X - .

Согласно (5.2) с увеличением числа измерений сумма случайных погрешностей, деленная на их число, стремится к нулю, и, следовательно, среднее арифметическое L стремится к истинному значению Х. Поэтому значение определяемой величины принимают равным среднему арифметическому.

Средняя квадратическая погрешность арифметической средины. Пусть точность результатов измерений l1, l2, …, ln характеризуется средними квадратическими погрешностями

m1 = m2 = ¼ = mn = m

и требуется найти среднюю квадратическую погрешность M арифметической средины.

Представим формулу (5.7) в следующем виде:

L = .

Среднюю квадратическую погрешность арифметической средины найдем как погрешность функции измеренных величин по формуле (5.6)

 

или

(5.8)

Формула (5.8) показывает, что погрешность арифметической средины с ростом числа измерений убывает пропорционально квадратному корню из этого числа. Так, чтобы погрешность среднего арифметического уменьшить в 2 раза, число измерений надо увеличить в 4 раза.

Обработка результатов равноточных измерений. Математическая обработка ряда результатов l1, l2, …, ln прямых равноточных измерений одной величины выполняется в следующей последовательности:

1. Вычисляют среднее арифметическое L

.

2. Вычисляют поправки к vi результатам измерений

(i = 1, 2, …, n)

Контролем правильности вычислений служит сумма поправок, которая должна быть близка к нулю.

3. Вычисляют среднюю квадратическую погрешность одного измерения по формуле Бесселя:

.

Значение m вычисляют с двумя-тремя значащими цифрами.

4. Вычисляют среднюю квадратическую погрешность среднего арифметического

.



Дата добавления: 2016-09-26; просмотров: 1876;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.