ВЕКТОРНЫЕ ДИАГРАММЫ ТОКОВ И НАПРЯЖЕНИЙ ПРИ КЗ
Назначение и условия построения векторных диаграмм.Для уяснений условий работы реле удобно использовать векторные диаграммы подведенных к ним напряжений и токов.
За основу построения векторных диаграмм приняты следующие исходные положения:
для упрощения рассматривается начальный момент КЗ на ЛЭП с односторонним питанием при отсутствии нагрузки (рис.1.3, а);
для получения действительных углов сдвига фаз между токами и напряжениями учитывается падение напряжения не только в индуктивном, но и в активном сопротивлении R цепи КЗ;
электрическая система, питающая место КЗ, заменяется одним эквивалентным генератором с фазными ЭДС ЕА, ЕВ, ЕС, представляющими симметричную и уравновешенную1 систему векторов, относительно которых строятся векторы токов и напряжений [11, 18].
Для упрощения построения диаграмм обычно рассматриваются металлические КЗ, при которых переходное сопротивление в месте замыкания RП = 0.
За положительное направление токов принимаетсяих направление от источника питания к месту повреждения, соответственно положительными считаются ЭДС и падения напряжения, направления которых совпадают с направлением положительного тока.
Векторная диаграмма при трехфазном КЗ. На рис.1.4, а показана ЛЭП, на которой возникло металлическое замыкание трех фаз в точке К. Построение векторной диаграммы (рис.1.4, б) начинается с фазных ЭДС ЕА, ЕВ, ЕС. Под действием фазных ЭДС в каждой фазе возникает ток КЗ:
где ЕФ – фазная ЭДС системы; ZС, RС, XС; ZЛ.К, RЛ.К, XЛ.К – сопротивления системы и поврежденного участка ЛЭП (рис. 1.4, а).
Токи IАк=IВк=IСк=Iк имеют сдвиг по фазе относительно соответствующих ЭДС:
при 1,73 угол 60 град.
1 - 45 град.
1Уравновешенной называется система векторов, геометрическая сумма которых равна нулю.
Рис.1.4. Трехфазное КЗ:
а – схема; б — векторная диаграмма токов и напряжений
Напряжения в точке К равны нулю: UАк=UВк=UСк=0.
Фазные напряжения в месте установки РЗ, в точке Р (рис.1.4, а), UАР=IАкRЛ.К+jIАкXЛ.К
определяются на диаграмме (рис.1.4, б) как сумма падений напряжения в активном сопротивлении IАкRЛ,совпадающего по фазе с вектором IАк, и в реактивном сопротивлении IАкXЛ , сдвинутого на 90° относительно IАк. Аналогично строятся векторы UBP и UCP. Модули (абсолютные значения) UAP, UBP, UCP имеют одинаковые значения, каждый из этих векторов опережает ток одноименной фазы на угол
φк = arctg(XЛ.К/RЛ.К).
Для ЛЭП 35 кВ этот угол равен 45 – 55°, 110 кВ – 60–78°, 220 кВ (один провод в фазе) – 73–82°, 330 кВ (два провода в фазе) – 80–85°, 500 кВ (три провода в фазе) – 84–87°, 750 кВ (четыре провода в фазе) – 86–88°. Большее значение φк соответствует большему сечению провода, так как чем больше сечение, тем меньше R.
Из рассмотренных диаграмм трехфазных КЗ следует:
1) векторные диаграммы токов и напряжений являются симметричными и уравновешенными, так как в них отсутствуют составляющие обратной и нулевой последовательностей;
2) трехфазное КЗ сопровождается резким снижением всех междуфазных напряжений (как в месте КЗ, так и вблизи от него). В результате этого К(3) является самым опасным повреждением для устойчивости параллельной работы энергосистемы и потребителей электроэнергии.
Двухфазное короткое замыкание. На рис.1.5, а показано металлическое КЗ между фазами В и С ЛЭП. Под действием междуфазной ЭДС ЕВС (рис.1.5, а) возникают токи КЗ IВк и IСк.
Их значения определяются по формуле IК(2)=ЕВС/2ZФ, где 2ZФ – полное сопротивление прямой последовательности двух фаз (2ZФ=ZВ+ZС). Токи в поврежденных фазах равны по значению, но противоположны по фазе, а ток в неповрежденной фазе равен нулю (при неучете нагрузки):
Ток нулевой последовательности (НП) при К(2) отсутствует, так как сумма токов трех фаз IA+IB+IC= 0.
Векторная диаграмма в точке К. На рис.1.5, б построены векторы фазных ЭДС и ЭДС между поврежденными фазами ЕВС.
Вектор тока КЗ IкВ отстает от создающей его ЭДС
Напряжение неповрежденной фазы А одинаково в любой точке сети и равно фазной ЭДС: UA=EA. Поскольку междуфазное напряжение при металлическом КЗ в точке КЗ UBCк=UBк – UCк = 0, то:
(1.3)
т.е. фазные напряжения поврежденных фаз в месте КЗ равны по модулю и совпадают по фазе.
Поскольку фазные напряжения при двухфазном КЗ не содержат составляющих НП, в любой точке сети должно удовлетворяться условие:
(1.3а)
Учитывая, что в месте КЗ UBK=UCK и UAK=EA, находим
(1.3б)
Следовательно, в месте КЗ напряжение каждой поврежденной фазы равно половине напряжения неповрежденной фазы и противоположно ему по знаку. На диаграмме вектор UAK совпадает с вектором EA, а векторы UBK и UCK – равны друг другу и противоположны по фазе вектору EA.
Векторная диаграмма в точке P приведена на рис.1.5, в. Векторы токов остаются без изменения. Напряжения фаз В и С в точке Р равны:
(1.4)
Чем дальше точка Р отстоит от места КЗ, тем больше напряжение: UBСР=UВР–UСР. Напряжение неповрежденной фазы UAP=EA. Вектор тока IBP отстает от междуфазного напряжения UBCP на угол φк=arctg(XЛ/RЛ).
Двухфазные КЗ характеризуются двумя особенностями:
1) векторы токов и напряжений образуют несимметричную, но уравновешенную систему, что говорит об отсутствии составляющих НП. Наличие несимметрии указывает, что токи и напряжения имеют составляющие обратной последовательности (ОП) наряду с прямой;
2) фазные напряжения даже в месте КЗ существенно больше нуля, только одно междуфазное напряжение снижается до нуля, а значение двух других равно 1,5UФ. Поэтому двухфазное КЗ менее опасно для устойчивости ЭЭС и потребителей электроэнергии.
Однофазное короткое замыкание (К(1)). Замыкание на землю одной фазы вызывает появление тока КЗ только в электрических сетях 110 кВ и выше, работающих с глухозаземленными нейтралями трансформаторов. Характер токов и напряжений, появляющихся при этом виде повреждения на фазе А, поясняет рис.1.6, а.
Ток КЗ Iак возникающий под действием ЭДС ЕА, проходит по поврежденной фазе от источника питания G и возвращается обратно по земле через заземленные нейтрали N трансформаторов:
(1.5)
Рис.1.6. Однофазное КЗ:
а - схема; векторные диаграммы токов и напряжений в месте КЗ (б) и в месте установки реле Р (в), токов (г) и напряжений (д) симметричных составляющих в месте КЗ
Индуктивные и активные сопротивления в этом выражении соответствуют петле фаза-земля и отличаются от значений сопротивлений фаз при междуфазных КЗ. Вектор IАк отстает от вектора ЭДС ЕА на угол В неповрежденных фазах токи отсутствуют.
Напряжение поврежденной фазы А в точке К UАК=0. Напряжения неповрежденных фаз1 В и С равны ЭДС этих фаз:
(1.6)
Векторная диаграмма для места повреждения изображена на рис.1.6, б. Междуфазные напряжения UABK= UBK; UBCK= UBK – UCK; UCAK= UCK.
Геометрические суммы фазных токов и напряжений равны:
(1.6a)
Отсюда ясно, что фазные токи и напряжения содержат составляющие НП:
Вектор I0K совпадает по фазе с IAK вектор U0K противоположен по фазе EA и равен 1/3 нормального (до КЗ) значения напряжения поврежденной фазы А:
U0K= – 1/3EA= –1/3UAN. Ток I0K опережает напряжение U0K на 90°.
Векторная диаграмма в точке Р при К(1) приведена на рис.1.6, в. Ток фазы А остается неизменным. Напряжение поврежденной фазы
(1.7)
Вектор UAP опережает IАк на угол φк=arctg(Xл(1)/Rл(1)).
Напряжения неповрежденных фаз В и С не изменяются:UBP=EB; UCP=EC. Междуфазные напряжения UABP UACP и увеличиваются. Векторы НП I0P и U0P равны:
Как следует из диаграммы, UoP<UoK по модулю и смещается по фазе из-за наличия активного сопротивления RKP(1) (фаза-земля). Отметим некоторые особенности векторных диаграмм (рис.1.6, б и в):
1) токи и фазные напряжения образуют несимметричную и неуравновешенную систему векторов, что говорит о наличии кроме прямой составляющих ОП и НП;
2) междуфазные напряжения в точке К больше нуля, площадь треугольника, образованного этими напряжениями, отличается от нуля. Однофазное КЗ является наименее опасным видом повреждения с точки зрения устойчивости ЭЭС и работы потребителей.
Двухфазное короткое замыкание на землю (К(1,1)). Этот вид КЗ также может возникать только в сети с глухозаземленной нейтралью (см. рис.1.2, г). Векторная диаграмма КЗ на землю двух фаз приведена на рис.1.7 для точек К и Р.
Под действием ЭДС ЕВ и ЕС в поврежденных фазах В и С
протекают токи IВк и IСк замыкающиеся через землю:
(1.8)
В неповрежденной фазе ток отсутствует:
(1.9)
Сумма токов всех трех фаз с учетом (1.8) и (1.9) не равна нулю: IАк+IВк+IСк=IК(3)=3I0, полные токи содержат составляющую НП.
В месте КЗ напряжения поврежденных фаз В и С, замкнутых на землю, равны нулю: UBK=UCK=0. Напряжение между поврежденными фазами также равно нулю: UBCK=0. Напряжение неповрежденной фазы UAK остается нормальным (если пренебречь индукцией от токов IВк и IСк). В точке К треугольник междуфазных напряжений (рис.1.7, в) превращается в линию, а междуфазные напряжения между поврежденными и неповрежденными фазами UAB и UCA снижаются до фазного напряжения UAK.. Диаграмма токов и напряжений для точки Р построена на рис.1.7, б.
В связи с увеличением напряжений UBР и UСР увеличиваются и междуфазные напряжения, растет площадь треугольника междуфазных напряжений и уменьшается напряжение НП:
1 В действительности ток IАк проходящий по поврежденной фазе, наводит в фазах В и С дополнительную ЭДС взаимоиндукции ΔЕ, которая отстает по фазе от тока IАк на 90°. С учетом взаимоиндукции U'BK=EB+ΔE и U'СK=EС+ΔE ЭДС взаимоиндукции увеличивает напряжения неповрежденных фаз и уменьшает угол сдвига фаз между ними (0 < 120°). Для упрощения диаграммы ΔЕ не учитывается.
Рис.1.7. Двухфазное КЗ на землю:
а — схема; векторные диаграммы токов и напряжений в месте КЗ и в месте установки реле Р (б); напряжения нулевой последовательности и фазных напряжений в месте КЗ (в) и в точке Р (г)
Векторные диаграммы при двухфазных КЗ на землю имеют следующие особенности:
1) токи и напряжения несимметричны и неуравновешены, что обусловливает появление кроме прямой составляющих НП и ОП;
2) из-за резкого снижения напряжений в месте КЗ этот вид повреждения после К(3) является наиболее тяжелым для устойчивости энергосистемы и потребителей электроэнергии.
Двойное замыкание на землю (К(1)). Подобное КЗ возникает в сети с изолированной или заземленной через дугогасящий реактор нейтралью. Под двойным замыканием подразумевается замыкание на землю двух фаз в разных точках сети (К1 и К2 на рис.1.8). Под действием разности ЭДС поврежденных фаз ЕВ-ЕС в фазах В и С возникают токи К3 IВк и IСк, замыкающиеся через землю в точках К1 и К2. В этих точках и в поврежденных фазах токи КЗ равны по значению и противоположны по фазе: IВк=- IСк; неповрежденной фазе А ток IАК = 0.
Векторная диаграмма токов на участке между источником питания и ближайшим местом повреждения (точкой К1) будет такой же, как при двухфазном КЗ без земли (см. § 1.3, рис.1.5). Сумма токов фаз на этом участке равна нулю (IАк+IВк=IСк=0), следовательно, в токах фаз отсутствуют составляющие НП.
На участке ЛЭП между точками замыкания на землю К1 и К2 в условиях одностороннего питания ток КЗ протекает только по одной фазе (фаза В на рис.1.8), т.е. так же, как и при однофазном КЗ (см. § 1.3). Векторная диаграмма полных токов и напряжений на этом участке аналогична диаграмме при однофазных КЗ (см. рис.1.6, б), а в токах и напряжениях на участке К1, К2 появляются составляющие НП. С учетом того, что на этом участке . Поскольку точки К1 и К2 имеют потенциал земли, то в точке К2 , а в точке К1 .
Дата добавления: 2016-09-26; просмотров: 4560;