АЭРОДИНАМИЧЕСКИЕ ТРУБЫ
Экспериментальная установка для исследования явлений и процессов, сопровождающих обтекание тел потоком газа называется аэродинамической трубой. Принцип действия аэродинамических труб основан на принципе относительности Галилея: вместо движения тела в неподвижной среде изучается обтекание неподвижного тела потоком газа В аэродинамических трубах экспериментально определяются действующие на ЛА аэродинамические силы и моменты исследуются распределения давления и температуры по его поверхности, наблюдается картина обтекания тела, изучается аэроупругость и т д.
Аэродинамические трубы зависимости от диапазона чисел Маха М разделяются на дозвуковые (М=0,15-0,7), трансзвуковые (М=0,7-1 3), сверхзвуковые (М=1,3-5) и гиперзвуковые (М=5-25), по принципу действия - на компрессорные (непрерывного действия), в которых поток воздуха создается спец компрессором, и баллонные с повышенным давлением, по компоновке контура - на замкнутые и незамкнутые.
Компрессорные трубы имеют высокий кпд, они удобны в работе, но требуют создания уникальных компрессоров с большими расходами газа и большой мощности. Баллонные аэродинамические трубы по сравнению с компрессорными менее экономичны, поскольку при дросселировании газа часть энергии теряется. Кроме того, продолжительность работы баллонных аэродинамических труб ограничена запасом газа в баллонах и составляет для различных аэродинамических труб от десятков секунд до несколько минут.
Широкое распространение баллонных аэродинамических труб обусловлено тем, что они проще по конструкции а мощности компрессоров, необходимые для наполнения баллонов, относительно малы. В аэродинамических трубах с замкнутым контуром используется значительная часть кинетической энергии, оставшейся в газовом потоке после его прохождения через рабочую область, что повышает КПД трубы. При этом, однако, приходится увеличивать общие размеры установки.
В дозвуковых аэродинамических трубах исследуются аэродинамические характеристики дозвуковых самолетов вертолетов а также характеристики сверхзвуковых самолетов на взлетно-посадочных режимах. Кроме того, они используются для изучения обтекания автомобилей и др. наземных транспортных средств, зданий, монументов, мостов и др. объектов На рис показана схема дозвуковой аэродинамической трубы с замкнутым контуром.
Рис. 12 Схема дозвуковой компрессорной аэродинамической трубы.
1- хонейкомб 2 - сетки 3 - форкамера 4 - конфузор 5 - направление потока 6 - рабочая часть с моделью 7 - диффузор, 8 - колено с поворотными лопатками, 9 - компрессор 10 - воздухоохладитель
Рис. 13 Схема баллонной трансзвуковой эжекторной аэродинамической трубы
1 - хонейкомб 2 - сетки 3 - форкамера 4 конфузор 5 перфорированная рабочая часть с моделью 6 эжектор 7 диффузор 8 колено с направляющими лопатками 9 выброс воздуха 10 - подвод воздуха от баллонов
Рис. 14 Схема сверхзвуковой баллонной аэродинамической трубы
1 - баллон со сжатым воздухом 2 - трубопровод 3 - регулирующий дроссель 4 - выравнивающие сетки 5 - хонейкомб 6 - детурбулизирующие сетки 7 - форкамера 8 - конфузор 9 - сверхзвуковое сопло 10 - рабочая часть с моделью 11 - сверхзвуковой диффузор 12 - дозвуковой диффузор 13 - выброс в атмосферу
Рис. 15 Схема баллонной гиперзвуковой аэродинамической трубы
1 - баллон с высоким давлением 2 - трубопровод 3 - регулирующий дроссель 4 - подогреватель 5 - форкамера с хонейкомбом и сетками 6 - гиперзвуковое осесимметричное сопло 7 - рабочая часть с моделью 8 - гиперзвуковой осесимметричный диффузор 9 - воздухоохладитель 10 - направление потока 11 - подвод воздуха в эжекторы 12 - эжекторы 13 - затворы 14 - вакуумная емкость 15 - дозвуковой диффузор
Дата добавления: 2016-08-23; просмотров: 3101;