Измерение электрических величин с помощью электронно-лучевого осциллографа


Осциллограф– прибор, показывающий форму напряжения во времени. Также он позволяет измерять ряд параметров сигнала, такие как напряжение, ток, частота, угол сдвига фаз. Но главная польза от осциллографа – возможность наблюдения формы сигнала. Во многих случаях именно форма сигнала позволяет определить, что именно происходит в цепи рисунок 1.

 

Рисунок 1

Принцип действия осциллографа.

«Сердцем» прибора является электронно-лучевая трубка (ЭЛТ). ЭЛТ является электронной лампой, и, как и все лампы, она «заполнена» вакуумом. Катод излучает электроны, а система фокусировки формирует из них тонкий луч. Этот электронный луч попадает на экран, покрытый люминофором, который под воздействием электронной бомбардировки светится, и в центре экрана возникает светящаяся точка.

Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси – пропорционально исследуемому напряжению.

На пластины горизонтального отклонения луча (расположенные вертикально) подается напряжение развертки. Оно имеет пилообразную форму: постепенно линейно нарастает и быстро спадает (рисунок 3).

Отрицательное напряжение отклоняет луч влево, а положительное – вправо (если смотреть со стороны экрана). В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки (иногда при измерениях ее называют нулевой линией). Она играет роль оси времени t графика. Частота повторения пилообразных импульсов называется частотой развертки, но она для измерений не используется.

 

Рисунок 2 — Устройство электронно-лучевой трубки с электростатическим управлением

Рисунок 3 — Форма напряжения развертки

 

Если при этом на пластины вертикального отклонения (расположенные горизонтально) подать исследуемое напряжение, то луч начнет отклоняться и по вертикали: при положительном напряжении вверх, а при отрицательном – вниз. Движения по вертикали и по горизонтали происходят одновременно и в результате исследуемый сигнал «разворачивается» во времени. Получившееся изображение называется осциллограммой.

Кроме линейной существует еще круговая и спиральная развертки, а также фигуры Лиссажу, когда один из сигналов является разверткой для второго.

Важным моментом является соотношение частот развертки и сигнала. Если эти частоты в точности равны, то на экране отображается ровно один период исследуемого сигнала. Если частота сигнала вдвое больше частоты развертки, то мы увидим два периода, если втрое – то три. Если частота сигнала вдвое меньше частоты развертки, то мы увидим только половину периода сигнала. Частоту (скорость) развертки можно регулировать в широких пределах. Но изображение будет стабильным только в том случае, если частоты развертки и сигнала точь-в-точь совпадают. При малейшем несовпадении частот, каждое начало движения луча по экрану будет соответствовать новой точке функции входного сигнала, и ее график каждый раз будет рисоваться в новом положении. При небольшом несовпадении частот (доли герца) это будет выглядеть как график, «плывущий» влево или вправо. При несовпадении частот в несколько герц и более, осциллограмма становится нечитаемой (рисунок 4).

 

Рисунок 4 — Осциллограмма при отсутствии синхронизации

Добиться абсолютно точного совпадения частот (особенно в десятки-сотни килогерц) практически невозможно. Поэтому разверткой в осциллографе управляет специальная схема синхронизации. Она задерживает начало движения луча по экрану так, чтобы луч начинал двигаться в тот момент, когда входное напряжение достигло определенного значения. В этом случае луч начинает движение (и рисование осциллограммы) каждый раз с одной и той же точки графика входного сигнала. В результате каждое следующее движение луча рисует картинку в одном и том же положении, даже если частоты сигнала и развертки заметно не совпадают. Изображение получается стабильным и устойчивым. Напряжение сигнала, при котором происходит синхронизация (уровень синхронизации), задается органами управления осциллографа. Визуально изменение этого напряжения вызывает смещение начала изображаемого графика относительно начала периода сигнала, рисунок 5.

Рисунок 5 — Осциллограммы при разных уровнях синхронизации

Для того чтобы можно было наблюдать несколько сигналов одновременно, выпускают многолучевые и многоканальные осциллографы. ЭЛТ двухлучевых осциллографов работает одновременно с двумя лучами на общем экране, которые позволяют наблюдать два сигнала абсолютно независимо. Поэтому больше распространены двухканальные осциллографы. Их ЭЛТ самая обычная, но они имеют два отдельных входа и два независимых усилителя вертикального отклонения, которые обслуживают входные сигналы. Кроме того, они имеют встроенный высокоскоростной коммутатор, очень быстро переключающий ЭЛТ (пластины вертикального отклонения) от одного канала к другому. Изображения сигналов при этом не являются непрерывными линиями, а состоят из множества штрихов. Но на экране штрихи сливаются, и в результате получается два графика входных сигналов. Лишь при наблюдении высокочастотных сигналов и неудачной частоте развертки изображение может стать пунктирным.



Дата добавления: 2020-10-14; просмотров: 385;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.