Светоизлучающие диоды


 

Благодаря своей простоте и низкой стоимости, светодиоды распространены значительно но шире, чем лазерные диоды.

Принцип работы светодиода основан на излучательной рекомбинации носителей заряда в активной области гетерогенной структуры при пропускании через нее тока, рис. 10.2а. Носители заряда - электроны и дырки - проникают в активный слой (гетеропереход) из прилегающих пассивных слоев (р- и п-слоя) вследствие подачи напряжения на р-п структуру и затем испытывают спонтанную рекомбинацию, сопровождающуюся излучением света.

Длина волны излучения l, (мкм) связана с шириной запрещенной зоны активного слоя Еq (эВ) законом сохранения энергии А= 1,24/ Еq рис. 10.2 б [3].

 
 

Показатель преломления активного слоя выше показателя преломления ограничивающих пассивных слоев, благодаря чему рекомбинационное излучение может распространяться в пределах активного слоя, испытывая многократное отражение, что значительно повышает КПД источника излучения.

Гетерогенные структуры могут создаваться на основе разных полупроводниковых материалов. Обычно в качестве подложки используются GaAs и InP. Соответствующий композиционный состав активного материала выбирается в зависимости от длины волны излучения и создается посредством напыления на подложку.

Длину волны излучения l0 определяют как значение, соответствующее максимуму спектрального распределения мощности, а ширину спектра излучения Dl0,5 - как интервал длин волн, в котором спектральная плотность мощности составляет половину максимальной.

Лазерные диоды

 

Два главных конструктивных отличия есть у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно большихзначениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового знамения получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью, благодаря чему лазерные диоды имеют значительно меньше ширину спектра излучения (1-2 нм) против 30-50 нм у светодиодов, рис. 17.

Зависимость мощности излучения от тока накачки описывается ватт-амперной характеристикой лазерного диода (рис. 20). При малых токах накачки лазер испытывает слабое спонтанное излучение, работая как малоэффективный светодиод.

 

Рис. 20. Ватт-амперные характеристики: 1 - лазерного диода; 2 – светодиода

 

При превышении некоторого порогового значения тока накачки, излучение становится индуцированным, что приводит к резкому росту мощности излучения и его когерентности.

Мощность выходного излучения Рвых или выходная мощность излучения светодиода отражает мощность вводимого в волокно излучения. Наряду с традиционной единицей измерения Вт она может измеряться в дБм.

Мощности Рвых, измеренной в мВт (10-3 Вт), будет соответствовать мощность рвых = 10lgPвых (дБм).

Мощность излучения, приводящаяся в характеристиках оптического передатчика, может варьироваться в некотором диапазоне. В таких случаях указывают диапазон мощности излучения.

В магистральных ВОЛС используются два окна 1,3 и 1,55 мкм. Поскольку наименьшее затухание в волокне достигается в окне 1,55 мкм, на сверхпротяженных безретрансляционных участках (L » 100 км) эффективней использовать оптические передатчики именно с этой длиной волны. В то же время на многих магистральных ВОЛС в состав ВОК входят только ступенчатые одномодовые волокна, имеющие минимум хроматической дисперсии в окрестности 1,3 мкм (волокон со смещенной дисперсией нет). На длине волны 1,55 мкм удельная хроматическая дисперсия у одномодовых волокон составляет 17 пс/нм.км. А поскольку полоса пропускания обратно пропорциональна ширине спектра излучения, то увеличить полосу пропускания можно только уменьшая ширину спектра излучения лазера. Итак, для того чтобы оптические передатчики на длине волны 1,55 мкм в равной степени использоваться на протяженной линии не только с одномодовым волокном со смещенной дисперсией (DSF), но и со ступенчатым волокном (SMF), необходимо делать ширину спектра излучения передатчиков как можно меньше.

четыре основных типа лазерных диодов получили наибольшее распространение: с резонатором Фабри-Перо; с распределенной обратной связью; с распределенным брэгговским отражением; с внешним резонатором.

Лазерные диоды с резонатором Фабри-Перо (FP лазеры, Fabry-Perot). Резонатор в таком лазерном диоде образуется торцевыми поверхностями, окружающими с обеих сторон гетерогенный переход. Одна из поверхностей отражает свет с коэффициентом отражения, близким к 100%, другая является полупрозрачной, обеспечивая, таким образом, выход излучения наружу.

На рис. 17 б показан спектр излучения промышленного лазерного диода с использованием резонатора Фабри-Перо. Как видно из рисунка, наряду с главным пиком, в котором сосредоточена основная мощность излучения, существуют побочные максимумы. Причина их возникновения связана с условиями образования стоячих волн. Для усиления света определенной длины волны необходимо выполнение двух условий. Первое, длина волны должна удовлетворять соотношению 2D = Nl, где D - диаметр резонатора Фабри-Перо, а N - некоторое целое число. Второе, длина волны должна попадать в диапазон, в пределах которого свет может усиливаться индуцированным излучением. Если этот диапазон достаточно мал, то имеет место одномодовый режим с шириной спектра меньше 1 нм. В противном случае в область Dl0,5 могут попасть два или более соседних максимумов, что соответствует многомодовому режиму с шириной спектра от одного до нескольких нм. FP лазер имеет далеко не самые высокие технические характеристики, но для тех приложений, где не требуется очень высокая скорость передачи данных, он, в силу более простой конструкции, наилучшим образом подходит с точки зрения цена-эффективность.

Следует отметить, что даже в том случае, когда соседние максимумы малы, то есть когда реализуется одномодовый режим излучения и Dl0,5. мало, с ростом скорости передачи FP лазера наблюдается перераспределение мощности в модах, которое приводит к паразитному эффекту - динамическому уширению спектра Dl (до 10 нм при частоте модуляции 1-2 ГГц).

Этот эффект отсутствует у перечисленных трех других более совершенных типов лазерных диодов, отличающихся способом организации оптического резонатора, и являющихся в некоторой степени модернизацией простого резонатора Фабри-Перо.

Лазерные диоды с распределенной обратной связью (DFB лазер) и с распределенным брэгговским отражением (DBR лазер). Резонаторы у этих двух довольно схожих типов представляют собой модификацию плоского резонатора Фабри-Перо, в которой добавлена периодическая пространственная модуляционная структура. В DFB лазерах периодическая структура совмещена с активной областью (рис. 21 а), а в DBR лазерах периодическая структура вынесена за пределы активной области (рис. 21 б). Периодическая структура влияет на условия распространения и характеристики излучения. Так, преимуществами DFB и DBR лазеров по сравнению с FP лазером являются: уменьшение зависимости длины волны лазера от тока инжекции и температуры, высокая стабильность одномодовости и практически 100 - процентная глубина модуляции. Температурный коэффициент для FP лазера порядка 0,5-1 нм/°С, в то время как для DFB лазера порядка 0,07-0,09 нм/°С. Основным недостатком DFB и DBR лазеров является сложная технология из
 
 

готовления и, как следствие, более высокая цена.

Лазерный диод с внешним резонатором (ЕС лазер). В ЕС лазерах один или оба торца покрываются специальным слоем, уменьшающим отражение, и соответственно, одно или два зеркала ставятся вокруг активной области полупроводниковой структуры. На рис. 21 в показан пример ЕС лазера с одним внешним резонатором. Антиотражательное покрытие уменьшает коэффициент отражения примерно на четыре порядка, в то время как другой торец активного слоя отражает до 30% светового потока благодаря френелевскому отражению. Зеркало, как правило, совмещает функции дифракционной решетки. Для улучшения обратной связи между зеркалом и активным элементом устанавливается линза.

Увеличивая или уменьшая расстояние до зеркала, а также одновременно разворачивая зеркало-решетку, - это эквивалентно изменению шага решетки - можно плавно изменять длину волны излучения, причем диапазон настройки достигает 30 нм. В силу этого, ЕС лазеры являются незаменимыми при разработке аппаратуры волнового уплотнения и измерительной аппаратуры для ВОЛС. По характеристикам они схожи с DFB и DBR лазерами.



Дата добавления: 2020-10-14; просмотров: 395;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.