Примеры решения задач. Брус защемлен, определить перемещение свободного конца


Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). .

Решение

1.  Брус ступенчатый, по­этому следует построить эпюры продольных сил и нормальных напряжений.

Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.

2. Определяем величины нор­мальных напряжений по сечениям с учетом изменений площади поперечного сечения.

Строим эпюру нормальных напряжений.

3. На каждом участке опре­деляем абсолютное удлинение. Результаты алгебраически сумми­руем.

Примечание. Балка за­щемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со сво­бодного конца (справа).

 

1. Два участка нагружения:

участок 1:

растянут;

участок 2:

2. 

Три участка по напряжениям:

 

Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормаль­ных напряжений по его длине, а также определить пере­мещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 105 Н/'мм3.

Решение

 

1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.

2. Вычислим напряжения в поперечных сечениях каж­дого участка:

для первого

для второго

для третьего

для четвертого

для пятого

Эпюра нормальных напряжений построена на рис. 2.9, в.

3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса опреде­ляется как алгебраическая сумма удлинений (укорочений) всех его участков:

Подставляя числовые значения, получаем

4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (уко­рочений) участков ///, IV, V:

Подставляя значения из предыдущего расчета, полу­чаем

Таким образом, свободный правый конец бруса пере­мещается вправо, а сечение, где приложена сила Р2, — влево.

5. Вычисленные выше значения перемещений можно полу­чить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р1; Р2; Р3 в отдельности и суммируя ре­зультаты. Рекомендуем учащемуся проделать это само­стоятельно.

 

Пример 3. Определить, какое напряжение возни­кает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l1 = 200,2 мм. Е = 2,1*106 Н/мм2.

Решение

Абсолютное удлинение стержня

Продольная деформация стержня

Согласно закону Гука

 

Пример 4. Стенной кронштейн (рис. 2.10, а) со­стоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F1 = 1 см2, площадь сечения подкоса F2 = 25 см2. Определить горизонтальное и вертикальное перемещения точки В, если в ней под­вешен груз Q = 20 кН. Модули продольной упругости стали Eст = 2,1*105 Н/мм2, дерева Ед = 1,0*104 Н/мм2.

Решение

 

1. Для определения продольных усилий в стерж­нях АВ и ВС вырезаем узел В. Предполагая, что стерж­ни АВ и ВС растянуты, направляем возникающие в них усилия N1 и N2 от узла (рис. 2.10, 6). Составляем уравнения равновесия:

откуда

 

Усилие N2 получилось со знаком минус. Это указы­вает на то, что первоначальное предположение о направ­лении усилия неверно — фактически этот стержень сжат.

2. Вычислим удлинение стальной тяги Δl1 и укорочение подкоса Δl2:

 

 

где

Тяга АВ удлиняется на Δl1 = 2,2 мм; подкос ВС уко­рачивается на Δl1 = 7,4 мм.

3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если де­формированные стержни АВ1 и В2С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В1 и В2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В1В' и В2В', соответственно перпендикулярными к АВ1 и СВ2. Пересечение этих перпендикуляров (точка В') дает новое положение точки (шарнира) В.

4. На рис. 2.10, г диаграмма перемещений точки В изо­бражена в более крупном масштабе.

5. Горизонтальное пере­мещение точки В

Вертикальное

где составляющие отрезки определяются из рис. 2.10, г;

Подставляя числовые значения, окончательно получаем

При вычислении перемещений в формулы подстав­ляются абсолютные значения удлинений (укорочений) стержней.

 

Контрольные вопросы и задания

1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)

2. Что характеризует коэффициент поперечной деформации?

3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.

4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?

5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?

6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?

7. Ответьте на вопросы тестового задания.



Дата добавления: 2020-08-31; просмотров: 2484;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.