Биологические аспекты старения и смерти.


1. Постнатальный онтогенез, его периодизация.

Постэмбриональное развитие (для человека постнатальное) начинается с момента рождения и заканчивается естественной гибелью или смертью.

Постэмбриональное развитие включает в себя несколько периодов:

1. Дорепродуктивный (ювенильный).

2. Репродуктивный (период зрелости).

3. Пострепродуктивный (период старости).

 

2. Дорепродуктивный период, его характеристика. Рост организма как важная характеристика дорепродуктивного периода.

Дорепродуктивный период начинается сразу после рождения. В это время заканчиваются процессы морфогенеза, начинают функционировать те системы, которые не функционировали в эмбриогенезе (дыхательная, выделительная и ряд других).

Важная характеристика дорепродуктивного периода – это рост организма. При этом происходит увеличение размеров тела в целом, увеличиваются его продольные размеры; увеличиваются размеры тканей и органов.

 

3. Характер роста организма и отдельных его частей.

В основе роста организма лежат три основных процесса:

1. увеличение числа клеток.

2. увеличение размеров клеток (гипертрофии).

3. накопление межклеточного вещества.

Различают два варианта роста: ограниченный и неограниченный. Неограниченный рост продолжается на протяжении всего онтогенеза, вплоть до смерти.

Выделяют несколько типов роста:

Ауксентичный – рост, идущий путем увеличения размеров клеток.

Пролиферационный – рост, протекающий путем размножения клеток: мультипликативный и аккреционный.

Мультипликативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной клетки, снова вступают в деление. Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается (например, в эмбриональном периоде).

Аккреционный рост заключается в том, что после каждого последующего деления лишь одна из дочерних клеток снова делится, тогда как другая прекращает деление. При этом число клеток растет линейно. Такой рост характерен для органов, где происходит обновление клеточного состава.

Необходимо указать, что особое значение при характеристике роста имеет увеличение продольных размеров тела, которое происходит в основном за счет роста длинных трубчатых костей. В трубчатых костях на границе диафиза и эпифиза выделяют зону роста. Здесь находятся хрящевые клетки, при делении которых кость растёт в длину.

Окончательное окостенение у каждой кости происходит в определенные сроки. У мужчин рост обычно заканчивается к 18-20 годам, у женщин – к 16-18 годам. В это время исчезают последние зоны роста. Именно тогда прекращается рост костей в длину.

Необходимо указать, что до 30 лет человек может подрасти на 3см за счет увеличения размеров позвонков.

Увеличение линейных размеров человека описывается S-образной кривой. Сразу после рождения идет усиленный рост организма, затем снижается и резко ускоряется к 13-14-15 годам. Это так называемый пубертатный скачок роста (в период полового созревания). Далее скорость роста несколько замедляется, а в возрасте 30-40-45 лет рост человека остается постоянным. По такой схеме растут кости, мышцы и многие внутренние органы (печень, почки, селезенка).

При старении происходит незначительное уменьшение роста.

Некоторые органы имеют совершенно иной характер:

К таким органам относится головной и спинной мозг, лимфоидные органы, органы размножения.

Вес головного мозга новорожденного составляет 25% от окончательного веса мозга (во взрослом состоянии), к 5 годам – 90%, к 10 годам – 95%.

Рост вилочковой железы (тимуса) – центрального органа иммунной системы. Относительный вес тимуса (к весу тела) достигает максимума к 12 годам. Абсолютный вес достигает максимума к 30 годам, а затем идет резкое уменьшение веса тимуса.

 

4. Генетический контроль роста. Роль нервной и эндокринной системы в регуляции процессов роста.

Рост относится к генетическим признакам, которые передаются по наследству подобно цвету волос и кожи, разрезу глаз и т.д. Именно поэтому у высоких родителей обычно бывают рослые дети, и наоборот. Рост – полигенный признак, за его проявление в фенотипе отвечают несколько генов. Свой контроль за ростом гены осуществляют через соответствующие гормоны. Важнейшим гормоном является гормон роста или соматотропин, вырабатываемый гипофизом.

Соматотропин стимулирует образование новых хрящевых клеток, а частично и их окостенение, способствует синтезу белка в клеточных структурах и образованию новых капилляров. Большое количество этого гормона вырабатывается ночью. Собственный соматотропин у ребенка вырабатывается с 3- 4 лет.

На рост организма также влияют гормоны щитовидной железы и половые гормоны.

5. Взаимодействие биологического и социального в период детства и мо­лодости.

Роль наследственности для роста велика, но это не единственный фактор. Наследственность следует рассматривать как ориентировочную программу, согласно которой рост человека может оказаться, например, в пределах от 160 до 180см. Каким он будет на самом деле, во многом зависит от внешних условий, которые могут тормозить наследственную программу или способствовать ее реализации. Условия среды, влияющие на рост человека: питание, физические нагрузки, психологическое воздействие курение, алкоголь.

Рост 15 лет мальчиков (г. Москва)

1882г. - 147см.

1923г. - 157см.

1988г. - 170см.

То есть происходит подрастание населения (это акселерация).

Одна из вероятных ее причин – улучшение условий жизни (питание). Замечено, что в годы войны и стихийных бедствий рост детей уменьшается. На рост незначительно влияет климат и географическая среда.

 

6. Формирование конституционных типов, типы телосложения.

С ростом человека связано формирование конституционных типов людей. Под этим следует понимать особенности внешних форм тела, особенности функций организма, особенности поведения данного человека. В зависимости от строения тела, в зависимости от внешних форм тела выделяют определенные типы телосложения. В настоящее время существует достаточно много классификаций. Одна из них классификация М.В. Черноруцкого. Согласно этой классификации выделяются 3 типа телосложения:

1. астенический тип.

2. гиперстенический тип.

3. нормостенический тип.

Гиперстеники.

Для них характерно преобладание поперечных размеров, не очень высокий рост, упитанность. Мускулатура хорошо развита. Грудная клетка короткая и широкая. Сердце относительно большое и расположено поперечно. Диафрагма расположена высоко.

Лёгкие короткие. Петли тонкой кишки расположены преимущественно горизонтально.

Астеники

Для них характерно преобладание продольных размеров, стройность, лёгкость. Слабое развитие мышц и жира. Грудная клетка узкая и длинная. Сердце расположено почти вертикально. Диафрагма расположена низко.

Лёгкие длинные. Сравнительно тонкие и узкие кости. Относительно более длинные конечности.


Нормостеники.

Для них характерны усреднённые параметры (с учётом возраста, пола, веса и т.д.)

Врачу необходимо знать тип телосложения, так как люди с различными типами телосложения предрасположены к различным заболеваниям.

Например:

Астеники чаще болеют заболеваниями легких и ЖКТ.

Гиперстеники чаще болеют заболеваниями сердца и сосудов, у них чаще возникает инфаркт миокарда и сахарный диабет.

Необходимо отметить, что тип телосложения предопределён генетически.

Репродуктивный период характеризуется стабильным функционированием всех систем организма. Организм выполняет свою биологическую роль – воспроизведение себе подобных.

 

7. Старение как продолжение развития. Программные теории старения.

Наука, изучающая старение организма – геронтология.

Старение – неизбежно возникающий, закономерно развивающийся разрушительный процесс, снижающий приспособительные возможности организма, сокращающий продолжительность жизни и повышающий вероятность смерти.

В настоящее время выдвинуто более 200 гипотез, пытающихся объяснить механизмы старения. До настоящего времени эти гипотезы не в состоянии ответить на такой казалось бы простой вопрос: почему организмы разных видов характеризуются различной продолжительностью жизни: мыши живут 2 года; птицы от 8 до 70 лет в зависимости от вида; черепахи до 300 лет?

Выделяют хронологическую и биологическую продолжительность жизни.

Хронологическая продолжительность жизни – это средняя продолжительность жизни. Она составляет для развитых стран 71 год, для развивающихся – 52 года. В 1988 году СССР занимал 35 место по продолжительности жизни, в 2010г. мы занимали 162 место (из 224 стран).

Биологическая продолжительность жизни по разным авторам колеблется от 80 до 200 лет.

На скорость старения и продолжительность жизни оказывает влияние генотип, т.е. имеет место генетический контроль. Можно сказать, старение – закономерная стадия индивидуального развития, поэтому оно генетически предопределено. Об этом говорят следующие данные:

1. каждый вид организмов имеет определённый срок жизни.

2. люди с одинаковой генетической программой – монозиготные близнецы – как правило, доживают до одинакового возраста.

3. круглый червь ценорабдитес элеганс – самооплодотворяющийся гермафродит. Его длина всего 1мм, живёт червь 3,5 суток, умирает сразу после откладывания яиц. При такой короткой жизни, о каких повреждениях можно говорить. Налицо запрограммированная клеточная смерть – апоптоз.

Генетическая предопределённость старения составляет суть программной теория старения. Старение – этозакономерная и неизбежная стадия индивидуального развития.

 

8. Старение как накопление ошибок в генетическом материале. Стохасти­ческие теории старения.

Стохастическая теория старения полагает, что старение связано с накоплением повреждений на разных уровнях организации организма, которые возникают случайно (стохастически) под действием внешних и внутренних факторов.

Эти повреждения в первую очередь происходят на молекулярном уровне (ДНК, белков, липидов, мембран). Изменения на молекулярном уровне приводят к нарушениям на уровне органелл, клеток, тканей и органов и систем органов. Это снижает жизнеспособность организма и повышает вероятности смерти.

Изменения, наблюдаемые в процессе старения организма на разных уровнях организации

Внешние и внутренние факторы

¯

молекулярные повреждения

¯

изменение состояния органелл клеток

¯

изменение состояния клеток

¯

изменение состояния тканей и органов

¯

изменение состояния систем организма

¯

снижение жизнеспособности организма

¯

увеличение вероятности смерти

9. Процессы, ведущие к старению на разных уровнях организации.

Генетический уровень
причины следствия
1. Действие внутренних факторов (продуктов обмена, в частности свободных радикалов). 2. Действие внешних факторов (ионизирующее излучение, температурный фактор, химические вещества и т.д.), липиды и другие биомолекулы. 1. В результате стохастических процессов при действии внутренних и внешних факторов происходит повреждение структуры и функции генетического материала (повреждение оснований ДНК, нарушение репликации и возникновение мутаций). 2. Изменяются свойства белков хроматина, увеличивается прочность связывания гистонов и ДИК. 3. Нарушение функции репарационных ферментов (ошибки репарационных ферментов)
Молекулярный уровень
причины следствия
1. Действие внутренних и внешних факторов на белки. 2. Нарушение транскрипции и трансляции вещества, изменения состояния ДНК.   1. Нарушения структуры и функции белков, липидов (в частности белков и липидов мембран клеток). 2. Нарушение структуры и функций белков-ферментов и вследствие этого нарушение течения ферментативных реакций. 3. Повреждение коллагена. 4. Нарушение структуры кодируемых молекул.

 

Клеточный уровень
причины следствия
1. Нарушение состояния липидов и т.д.) биологических мембран. 2. Нарушение состояния белков цитоплазмы и ядра. 3. Нарушение ферментативных реакций, 1. Снижение способности клеток к делению. 2. Уменьшение числа функциональных клеток. 3. Увеличение объема клеток. 4. Изменение формы ядра клеток, наличие неровной поверхности ядерных оболочек. 5. Расширение перинуклеарного пространства, расширение ядерных пор. 6. Нарушение структуры митохондрий (набухание, разрушениекрист и внутренней мембраны). Появление гигантских митохондрий. 7. Повреждение мембран лизосом и выход ферментов. 8. Нарушение структуры рибосом.
Тканевой и органный уровень
причины следствия
1. Изменение структуры и ф-й органелл, клеток и в целом нарушение состояния клеток различных тканей и органов. 1. Избыточное развитие и качественные изменения соединительной ткани. 2. Атрофические и дистрофические изменения в отдельных клетках тканей и органов. 3. Уменьшение количества клеток паренхиматозных органов. 4. Ухудшение работы тканей и органов.
Системный уровень
причины следствия
1. Нарушение структуры и функции тканей и органов. 1. Снижение эффективности различных систем организма в обеспечении нормальной жизнедеятельности (нервной, эндокринной, иммунной, сердечно-сосудистой и т.д.).

 

10. Продолжительность жизни людей, проблема долголетия.

С точки зрения медицины старение – патологическое состояние, т.к. увеличивается частота заболеваний с.с.с. и злокачественных опухолей.

Гериатрия – наука, изучающая болезни старческого возраста.

Направления, по которым работают ученые с целью замедлить старение организма и продлить жизнь весьма разнообразны.

1. Показано, что антиоксиданты (вит. Е) обезвреживают свободные радикалы и этим увеличивают продолжительность жизни.

2. Выделение генов высокоактивных репарирующих ферментов и введение их в организм с помощью методов генной инженерии.

Продолжительность жизни в 2008г.

Страна Место Муж. Женщ. Затраты на здравоохранение (дол/чел/год)
Япония 86 (7) 2.470
Канада 83 (5) 3.450
Россия 73 (14)

 

11. Биологические аспекты смерти. Смерть клиническая и биологическая.

Смерть – это однократное событие в жизни организма, это не одномоментный процесс. Выделяют клиническую и биологическую смерть.

Клиническая смерть характеризуется потерей сознания, отсутствием дыхания, остановкой сердца. Тем не менее, большинство клеток и органов остаются живыми, их метаболизм ещё упорядочен. В таком состоянии организм может находится 5- 7 минут не более.

Биологическая смерть характеризуется резким нарушением обмена веществ, прекращением процесса самообновления клеток, наступлением автолиза клеток. При автолизе происходит выход ферментов из лизосом и растворение клеток. Запускает автолиз недостаточное снабжение клеток кислородом. Наиболее чувствительны к недостатку кислорода нервные клетки, поэтому некроз клеток КБП наступает через 5-6мин.

Иногда после этого периода удаётся восстановить дыхание и сердечную деятельность, но сознание не возвращается.

ЛЕКЦИЯ 16 Регенерация ор­ганов и тканей.

1. Регенерация, определение, классификация.

Под регенерацией понимают совокупность процессов, которые направлены на восстановление и обновление биологических структур, снашиваемых или разру­шенных в процессе жизнедеятельности.

Принято различать регенерацию: физиологическую и репаративную.

2. Физиологическая регенерация.

Физиологическая регенерация - совокупность процессов, направленных на вос­становление биологических структур, изнашиваемых в процессе нормальной жизне­деятельности. Физиологическая регенерация протекает на протяжении всей жизни организма и является основой структурного гомеостаза. Физиологическая регенера­ция протекает в организме на различных уровнях: молекулярном, субклеточном, клеточном, тканевом и органном.

Молекулярный уровень - обновление и восстановление молекулярных структур клетки (белков, нуклеиновых кислот и др.).

Субклеточный уровень (или внутриклеточный) - для него характерно обновление и образование заново различных органелл клетки.

Клеточный уровень - это процесс деления клеток (пролиферация).

Пример: у человека в течение суток обновляется 1% эритроцитов, полное обнов­ление их происходит за 120 суток. В организме человека достаточно быстро обнов­ляется эпителий кишечника (1,5-2 суток), клетки кожи обновляются за 7-11 дней. Физиологическая регенерация имеет место и во внутренних органах; например, в печени - на 10-20 тысяч гепатоцитов приходится 1 делящаяся клетка.

Тканевой уровень является продолжением клеточного уровня регенерации. Про­является обновлением эпидермиса кожи, роговицы глаза, эпителия слизистой ки­шечника и др.

Органный – регенерация печени

Необходимо сказать, что физиологическая регенерация – это закономерный про­цесс индивидуального развития организма, так как в геноме клетки запрограммиро­вана продолжительность ее жизни, и, по-видимому, органелл клетки. После выпол­нения своей функции клетка или органелла погибает, и на ее место должны прихо­дить новые. Таким образом, физиологическая регенерация обеспечивает постоянст­во клеточного состава организма (1013 - 1014).

 

3. Репаративная регенерация как процесс вторичного развития, ее биоло­гическая сущность.

Репаративная регенерация - это процесс вторичного развития, в результате кото­рого частично или полностью восстанавливаются поврежденные организмы, орга­ны, ткани, клетки или их органеллы. То есть при регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в уже сформированном организме.

Особенности репаративной регенерации:

вторичность развития - характерный признак репаративной регенерации. регене­рация, как свидетельствует даже сам термин, сводится к образованию заново, т. е. к развитию. это развитие происходит вне связи с онтогенезом, поскольку однаж­ды этот орган уже развился.

наличие повреждения. повреждение может быть результатом действия различ­ных факторов (t°, кислоты, щелочи, радиационное излучение, механические трав­мы). у животных возможна автотомия.

в регенерационный процесс может вовлекаться большая или меньшая часть орга­на, организма, то есть масштаб регенерации может быть различным. например, у плоских червей целый организм может восстановиться из части, в этом случае масштаб регенерации большой.

Восстановленный орган, как правило, повторяет своё первичное развитие на 100%

 

4. Характерные признаки репаративной регенерации, атипичная регенерация.

Поскольку регенерация - процесс вторичного развития, она не всегда полностью повторяет течение индивидуального развития (первичного развития). Хотя в части клеточных механизмов есть много общего. Однако в некоторых случаях регенери­ровавший орган количественно или качественно отличался от удаленного органа. Степень отличия может быть различна. Например, вместо одного органа развивает­ся совсем другой - это атипичная регенерация (гетероморфоз)

• на конечности тритона регенерирует не 5 пальцев, а 3 или 2

• вместо удалённой конечности у тритона регенерирует плавник

• вместо удаленного глаза у рака в некоторых случаях развивается усик, если вме­сте с глазом удалялся зрительный ганглий.

Гомоморфоз - если на месте удаленного органа развивается тот же самый орган (при удалении глаза у рака развивается глаз).

В 1901 году Т. Морган выделил два способа репаративной регенерации: эпиморфоз и морфаллаксис. Позднее (50-60гг. 20 века) были открыты еще 2 способа репаратив­ной регенерации: заполнения дефекта и регенерационная гипертрофия.

 

5. Масштаб регенерации, его границы у разных видов животных.

В регенерационный процесс может вовлекаться большая или меньшая часть ор­гана, организма, то есть масштаб регенерации может быть различным. Например, у плоских червей целый организм может восстановиться из части, то есть в этом слу­чае масштаб регенерации большой. У гидры (тип Кишечнополостные) восстановле­ние целого организма возможно из 1/200 части тела (Б. Токин называет это сомати­ческим эмбриогенезом и не относит данное явление к регенерации). Однако боль­шинство ученых считает, что это репаративная регенерация с очень большим мас­штабом. В целом же масштаб регенерации с повышением уровня организации сни­жается.

6. Способы репаративной регенерации: эпиморфоз и морфоллаксис.

Эпиморфоз - это восстановление поврежденного организма или органа до целого в результате роста и формирования недостающей части от раневой поверхности. Таким образом, при эпиморфозе восстановление недостающей части идет путем надстройки от раневой поверхности.

Пример, регенерация конечности после ампутации у тритона и личинок бесхво­стых амфибий (у лягушки локтевой сустав не восстанавливается).

Для обеспечение регенерации конечности амфибий необходимо:

• клетки культи вблизи раны должны сформировать бластему, из неё будут чер­паться клетки, идущие на восстановление утраченных структур

• должен быть контакт между клетками бластемы и внутренними компонентами культи

• в культе должно быть количество нервной ткани, превышающее некоторое по­роговое значение.

При эпиморфозе можно хорошо отличить регенерат и оставшуюся часть органа. Сходным образом регенерирует хвост у ящериц. Источником регенерационного ма­териала являются клетки оставшейся части органа (земноводные).

Морфаллаксис - это способ регенерации поврежденного организма или органа за счет перестройки, формообразования и роста оставшейся части. При этом способе культя и регенерат не отличимы (планария, гидроидные полипы).

При изучении регенерации у различных представителей животного мира показа­но, что в чистом виде эти способы регенерации встречаются крайне редко, как пра­вило, они сочетаются. Какой способ будет преобладать, зависит от масштаба реге­нерации, условий в которых протекает регенерационный процесс. Показано, что при регенерации малых фрагментов тела у планарий преобладает морфаллаксис, а при регенерации больших - эпиморфоз.

 

7. Регенерация органов и тканей у высокоорганизованных животных, чело­века.

Попытки найти эти способы регенерации (эпиморфоз и морфоллаксис) у высоко­организованных организмов (птицы и млекопитающие) не увенчались успехом. Единственное исключение - регенерация рогов у оленей (подошвенных бугров у че­ловека) идет путем эпиморфоза. Морфоллаксис у высших животных не встречается. Все это привело к тому, что высшие организмы были исключены из общего круга исследований, посвященных изучению регенерации. Кроме того, был сделан вывод о том, что по мере повышения организации животных регенерационная способность резко падает. Такое положение сохранялось до конца 40-х начала 50-х годов XX ве­ка. В эти годы у нас в стране М.А. Воронцова и А.Н. Студитский независимо друг от друга доказали, что высшие организмы не утратили способность к регенерации, но и обладают значительной регенерационной способностью. То есть по мере повыше­ния организации животных не происходит падение регенерационной способности, а имеют место другие способы регенерации.

В лаборатории Студитского А.Н. было доказано, что мышцы млекопитающих об­ладают способностью к регенерации. До этого большинство ученых считало, что мышцы полностью лишены регенерационной способности, каждое повреждение мышц заканчивалось образованием рубца. В изучение регенерации мышц включи­лись многие ученые по всему миру, и было показано, что мышцы способны образо­вывать заново большие участки, например, при полной переерезке мышцы и удале­нии значительной ее части. У некоторых животных (крыс) наблюдалась регенерация мышц после удаления почти всех их ткани, лишь на сухожилиях оставались не­большие участки мышц.

Далее А.Н. Студитским была показана возможность регенерации мышц даже по­сле их измельчения, то есть из мышечной кашицы. Регенерация мышц из мышечной кашицы оказалась возможной как на месте повреждения, так и после пересадки на другое место.

А.Н. Студитский показал также, что кости млекопитающих обладают способностью к регенерации после поднадкостничного вылущивания.

На основании полученных данных был сделан вывод о том, что наружные органы высокоорганизованных организмов регенерируют. Способ регенерации — путем заполнения дефекта. Позднее было показано, что и кожа млекопитающих регенериру­ет путем заполнения дефекта.

Этот способ регенерации встречается не только у млекопитающих, но и у других животных. Кроме того, он имеет некоторое сходство с эпиморфозом. Это сходство проявляется в том, что наблюдается рост тканей от края раны, то есть регенерация осуществляется как бы путем надставки. Но рост тканей происходит не наружу, как при эпиморфозе, а внутрь раны. Это очень существенное различие, свидетельст­вующее, что регенерация путем заполнения дефекта - особый способ регенерации.

8. Регенерационная гипертрофия: молекулярные, клеточные и системные механизмы.

Регенерация внутренних органов протекает особым способом, получившим на­звание “регенерационная гипертрофия”. Для этого способа характерны следующие особенности:

восстановление не полное. Форма органа не восстанавливается, восстанавли­вается только масса органа. Это имеет значение для органов, функция которых не зависит от формы.

рост тканей идет не от раневой поверхности, а путем роста остатка органа.

восстановление идет не по тканевому, а по органному типу.

цитологические механизмы связаны с пролиферацией клеток, и их гипертро­фией (полиплоидизация, увеличение количества органелл).

масштабы регенерации зависят от условий, в которых она протекает (состоя­ние н/с, эндокринной, иммунной).

Регенерационная гипертрофия характерна для следующих органов: печень, лег­кие, почки, яичники, слюнные железы, надпочечники.

Печень – быстро регенерирующий орган, масса которого восстанавливается к 10 дню после удаления 2/3 органа.

Восстановительные процессы при репаративной регенерации у млекопитающих происходят на различных уровнях (молекулярный, субклеточный, клеточный, тка­невой и органный).

Молекулярный, внутриорганоидный и органоидный уровни составляют внутрикле­точную регенерацию.

Очень близким явлением к регенерационной гипертрофии является компенсатор­ная гипертрофия, когда происходит увеличение сверх нормальных размеров одного из парных органов после удаления другого. В основе компенсаторной гипертрофии лежат те же клеточные процессы, что и при регенерационной гипертрофии (проли­ферация и гипертрофия клеток). Но в отличие от регенерационной гипертрофии процесс развивается без наличия повреждения.

Таким образом, доказано, что в процессе эволюции по мере усложнения организ­мов способность к регенерации не исчезла, она сохранилась, но произошла смена способов регенерации, и у высших организмов сузились масштабы регенерации.

 

9. Эволюция регенерационной способности.

Физиологическая регенерация представляет собой процесс, свойственный всем живым организмам.

Масштабы и способы репаративной регенерации существенно варьируют у представителей групп животных, различающихся систематическим положением. В ходе эволюции отдельных групп организмов повышалась роль одних способов регенерации на фоне снижения роли других. В процессе эволюции произошло сужение процессов регенерации. Изменялись и масштабы регенерации. Так, например гидра может регенерировать из фрагмента. А у человека регенерирует лишь часть клеток. У червя планарии, например, целый организм восстанавливается из 1/10 части исходного, а у гидры – из 1/200. Позвоночные в целом имеют суженный масштаб регенерации путем эпиморфоза. Однако, представители амфибий и рептилий могут восстанавливать отдельные органы, например конечности, хвост. Птицы и млекопитающие восстанавливают кожу, кости, мышцы, внутренние органы. Восстановление способом регенерационной гипертрофии, например, позволяет компенсировать потерю 4/5 печени.

10. Источники регенерационного материала при разных способах восстанов­ления.

Источником регенерационного материала при физиологической и репаративной регенерации служат стволовые клетки. Они присущи всем тканям и органам челове­ка.

Стволовая клетка - это примитивная малодифференцированная клетка, которой присуща высокая способность к пролиферации. Стволовая клетка обладает плюри-потентностью и способна дифференцироваться в разных направлениях с образова­нием специализированных тканей.

В тканях всех органов присутствуют резистентные стволовые клетки, они нико­гда не покидают данный орган (желудочки головного мозга, дно крипт кишечника). При необходимости резистентные стволовые клетки дают клетки любой ткани. По­лагают, что стволовые клетки сохраняются у человека в течение всей жизни, но с возрастом их количество уменьшается.

Циркулирующие стволовые клетки присутствуют в мезенхимальной ткани, в клетках костного мозга.

Надо отметить, что хотя в печени регенерация осуществляется за счёт дифферен­цированных клеток, но в ней также есть и стволовые клетки.

Существует и другая точка зрения в отношении источника материала для регене­рации. Так Л.В. Полежаев считает, что источником регенерационного материала яв­ляются дедифференцированные клетки тканей, которые образуются в ответ на по­вреждение. Другие считают, что источником регенерационного материала являются обычные клетки тканей, прошедшие активацию в ответ на повреждение (печень, легкие).

 

11. Регенерация и онтогенез.

Связь регенерации с онтогенезом.

Необходимо указать, что по мере старения организма регенерационная способ­ность сохраняется. Масштаб регенерации от возраста не зависит. Однако с возрас­том падает скорость регенерации, так как уменьшается количество стволовых кле­ток, в частности мезенхимальных стволовых клеток. Так у 65 летнего человека их 10 раз меньше (у 15 летнего подростка 1: 100.000, у 65 летнего —1:1.000.000)

 

12. Регуляция регенерации.

Регуляция осуществляется на различных уровнях:

- внутриклеточный (циклические нуклеотиды и ионы Са2+)

- межтканевой (факторы лимфоцитов)

- тканевой (кейлоны, ингибирующие пролиферацию и антикейлоны)

- системный (нервная, эндокринная).

В последние годы доказана важная роль иммунной системы и факторов лимфо­цитов (лимфокины), которые определяют во многом и полноту и скорость восста­новления. Бабаева: после резекции печени крысы у неё берутся лимфоциты и вво­дятся интактной крысе. У интактной крысы начинается активная пролиферация клеток печени, печень увеличивается в размерах.

 

13. Регенерация патологически измененных органов.

Регенерация патологически измененных органов - важная проблема и с биологи­ческой, и с медицинской точки зрения. Вредные воздействия на организм (вирусы, бактерии, голодание, облучение, токсические вещества) приводят к изменениям во внутренних органах, развивается патология (воспаление, развитие соединительной ткани и др.). В ответ на повреждение включаются процессы регенерации.

В настоящее время показано, что регенерация патологически измененных орга­нов имеет свои особенности по сравнению с регенерацией после резекции органа, хотя могут быть и общие способы осуществления регенерации.

в некоторых случаях регенерация патологически измененных органов проте­кает по типу регенерационной гипертрофии. Это происходит тогда, когда по­гибает целиком, пораженный участок органа. Например, если пузыри эхино­кокка разрушают долю печени, в которой они поселились, то оставшаяся часть печени претерпевает изменения по способу регенерационной гипертрофии, то есть оставшаяся часть печени увеличивается.

однако, такой способ регенерации патологически измененных органов не час­тое явление. Как правило, поражение органа бывает диффузным, особенно по­сле действия токсических веществ, вирусов (болезнь Боткина), бактерий (ту­беркулёз). Поэтому процесс восстановления начинается с внутриклеточной ре­генерации, которая возвращает клетки в исходное состояние, а потом наступа­ет пролиферация клеток.

14. Значение регенерации для медицины.

Изучение процессов регенерации имеет большое значение для медицины.

позволяет найти пути к восстановлению тканей и органов человека после по­вреждения (у детей до 5-6 лет восстанавливаются только концевые фаланги пальцев после ампутации)

позволяет разработать методы стимуляции процессов регенерации у человека.

зная закономерности регенерации, можно разобраться с такими явлениями, как злокачественный рост и иммуногенез, так как в основе всех живых явлений (регенерация, новообразования, иммуногенез) лежат примерно одни и те же клеточные механизмы.

15. Значение советских ученых в разработке учения о регенерации.

Студитский А.Н. изучал регенерацию мышц и костей (путем заполнения дефекта). Воронцова М.А. изучала регенерацию внутренних органов путем регенерационной гипертрофии (печень, почки).


ЛЕКЦИЯ 17 Гомеостаз. Трансплантация. Биоритмы.

 

1. Гомеостаз – свойство организмов сохранять постоянство внутренней среды.

Важной характеристикой живых существ является то, что они – открытые системы. Это общее свойство, характерное и для одноклеточных, и для многоклеточных организмов. Через живые системы проходят 3 потока: вещества, энергии, информации.

Организм человека является также открытой системой. Однако, несмотря на откры­тость организма для внешней чреды и наличие трёх потоков, организм сохраняет свое постоянство, как в функциональном, так и в морфологическом отношении. Для объе­динения всех процессов, обеспечивающих устойчивость организма, американский фи­зиолог Уолтер Кэннон в 1929г. предложил термин гомеостаз.

Гомеостаз – свойство живых существ поддерживать и сохранять постоянство как функциональных, так и морфологических признаков, несмотря на изменчивость усло­вий их существования.

Термин «внутренняя среда» впервые употребил французский гистолог Ш. Робен, но теорию внутренней среды создал Клод Бернар в 1878г. Но пока еще продолжаются споры о том, что понимать под этим термином.

К внутренней среде относятся кровь, лимфа, тканевая жидкость, которая омывает каждую клетку живого организма, принимая участие в питании и обмене веществ ор­ганов и тканей, которые имеют определенные физиологические и химические посто­янные показатели. Например, pH крови 7,36–7,40; АД 120/80мм.рт. ст.; содержание АТФ в клетке – 0,4%.

Однако в последние годы под постоянством внутренней среды понимают с одной стороны постоянство молекулярных, субклеточных, клеточных, тканевых структур, а с другой стороны постоянство обменных процессов, от которых зависит постоянство химического состава и физиологических функций организма.

 

2. Организм как открытая саморегулирующая система. Общие (кибернети­ческие) закономерности гомеостаза живых систем.

Организм сохраняет постоянство внутренней среды, потому что он является откр<



Дата добавления: 2016-07-18; просмотров: 3353;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.057 сек.