МАГНИТОМЯГКИЕ МАТЕРИАЛЫ
Основным видом потерь в магнитомягких материалах являются потери на вихревые токи, которые для листового образца пропорциональны квадрату частоты перемагничивания. Это явление связано с магнитным поверхностным эффектом, суть которого состоит в следующем. В магнитомягком материале магнитное поле вытесняется в поверхностные слои листа и магнитная индукция распределяется в сечении листа так, что центральная часть намагничивается слабее, чем поверхностные слои. При этом магнитная индукция снижается тем больше, чем выше частота перемагничивания.
Для уменьшения потерь на вихревые токи необходимо
- снижать толщину отдельных листов магнитного материала, так как при уменьшении толщины листа магнитный поверхностный эффект проявляется слабее;
- применять магнитные материалы с повышенным удельным электрическим сопротивлением, так как чем оно больше, тем на более высоких частотах можно использовать материал.
Магнитно-мягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в ряде других случаев, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи в трансформаторах используют магнитно-мягкие материалы с повышенным удельным электрическим сопротивлением, обычно применяя магнитопроводы, собранные из отдельных изолированных друг от друга тонких листов.
Железо (низкоуглеродистая сталь).Технически чистое железо обычно содержит небольшое количество примесей углерода, серы, марганца, кремния и других элементов, ухудшающих его магнитные свойства. Благодаря сравнительно низкому удельному электрическому сопротивлению технически чистое железо используется довольно редко, в основном для магнитопроводов постоянного магнитного потока. Обычно технически чистое железо изготовляется рафинированием чугуна в мартеновских печах или конверторах и имеет суммарное содержание примесей до 0,08— 0,1%. За рубежом такой материал известен под названием «армко-железо».
Низкоуглеродистая электротехническая листовая сталь — это одна из разновидностей технически чистого железа, выпускается в виде листов толщиной от 0,2 до 4 мм, содержит не свыше 0,04% углерода и не свыше 0,6% других примесей. Максимальное значение магнитной проницаемости для различных марок — не менее 3500— 4500, коэрцитивная сила — соответственно не более 100—65 А/м.
Особо чистое железо, содержащее "весьма малое количество примесей (менее 0,05%), может быть получено двумя сложными путями, в результате которых получают: '"
1. Электролитическое железо изготовляют электролизом раствора сернокислого или хлористого железа, причем анодом служит чистое железо, катодом — пластина мягкой стали. Осажденное на катоде железо (толщина слоя 4—6 мм) после тщательной промывки снимают и измельчают в порошок в шаровых мельницах, после чего производят вакуумный отжиг или переплавку в вакууме.
2. Карбонильное железо получают термическим разложением пентакарбонила железа согласно уравнению Fe(CO)6=Fe+5CO. Пентакарбонил железа представляет собой жидкость, получаемую воздействием окиси углерода на железо при температуре около 200°С и давлении около 15 МПа. Карбонильное железо имеет вид тонкого порошка, что делает его весьма удобным для изготовления прессованных высокочастотных магнитных сердечников.
Листовая электротехническая стальявляется основным магнитно-мягким материалом массового потребления. Введением в состав этой стали кремния достигается повышение удельного сопротивления, что дает снижение потерь на вихревые токи. Кроме того, присутствие в стали кремния способствует выделению углерода в виде графита, а также почти полному раскислению стали. Это дает увеличение μн, уменьшение Нс и снижение потерь на гистерезис. Вместе с тем кремний неблагоприятно влияет на механические свойства железа, увеличивая его хрупкость и затрудняя прокатку в листы и штамповку. При содержании кремния до 4% сталь обладает еще достаточно хорошими механическими свойствами, но при содержании кремния выше 5% она становится очень хрупкой. Путем комбинированной горячей и холодной прокатки кремнистой стали и особой термической обработки можно изготовить текстурованную сталь крупнокристаллического строения, причем кристаллы оказываются ориентированными таким образом, что ось их легкого намагничивания совпадает .с направлением прокатки. Магнитные свойства такой стали в направлении прокатки значительно выше, чем стали, не подвергавшейся подобной обработке.
Высоколегированная сталь находит применение главным образом для сердечников трансформаторов. Применение этой стали в силовых трансформаторах позволяет уменьшить массу и габаритные размеры на 20—25%, а в радио трансформаторах — на 40%.
К характеристикам электротехнической, стали относятся:
1) магнитная индукция В с числовым индексом, который определяет соответствующую напряженность магнитного поля (кА/м);
2) суммарные удельные потери мощности в ваттах на килограмм стали (отдельные листы стали изолированы друг от друга), находящейся в переменном магнитном поле, обозначаемые буквой Р с индексом в виде дроби, числитель которой представляет собой амплитудное значение магнитной индукции в теслах, а знаменатель — частоту в герцах.
Пермаллои. Это железоникелевые сплавы, обладают весьма большой начальной магнитной проницаемостью в области слабых полей, что связано с практическим отсутствием у них анизотропии и магнитострикции. Различают высоко никелевые и низконикелевые пермаллои. Высоко никелевые пермаллои содержат 72—80% Ni, низконикелевые 40—50% Ni.
Характеристики пермаллоев. Изменение основных магнитных свойств и удельного сопротивления сплавов железо—никель в зависимости от содержания никеля показано на рис. 9-14. Наибольшим значением максимальной магнитной проницаемости обладает сплав, содержащий 78,5% Ni. Очень легкую намагничиваемость пермаллоев в слабых полях объясняют практическим отсутствием у них анизотропии. Магнитные свойства пермаллоев очень чувствительны к внешним механическим напряжениям, зависят от химического состава и наличия инородных примесей в сплаве, а также очень резко меняются от режимов термообработки материала (температуры, скорости нагрева и охлаждения, состава окружающей среды и т. д.). Термическая обработка высоконикелевых пермаллоев сложнее, чем низконикелевых. Индукция насыщения высоко никелевых пермаллоев почти в два раза ниже, чем у электротехнической стали, и в полтора раза ниже, чем у низконикелевых пермаллоев. Магнитные проницаемости высоко никелевых пермаллоев в несколько раз выше, чем у низконикелевых, и намного превосходят проницаемости электротехнических сталей. Удельное сопротивление высоко никелевых пермаллоев почти в 3 раза меньше, чем низконикелевых, поэтому при повышенных частотах предпочтительно использовать низконикелевые пермаллои. Кроме того, и магнитная проницаемость пермаллоев сильно снижается с увеличением частоты, и тем резче, чем больше ее первоначальное значение Это объясняется возникновением в материале заметных вихревых токов из-за небольшого удельного сопротивления. Стоимость пермаллоев определяется содержанием в их составе никеля.
Влияние легирующих добавок. Для придания сплавам необходимых свойств в состав пермаллоев вводится ряд добавок. Молибден и хром повышают дельное сопротивление и начальную магнитную проницаемость пермаллоев и уменьшают чувствительность к механическим деформациям. К сожалению, одновременно с этим снижается индукция насыщения. Медь увеличивает постоянство р, в узких интервалах напряженности магнитного поля, повышает температурную стабильность и удельное сопротивление, а также делает сплавы легко поддающимися механической обработке. Кремний и марганец в основном только увеличивают удельное сопротивление пермаллоев.
Альсиферы.Сплавы железа с кремнием и алюминием. Оптимальный состав альсифера: 9,5%Si, 5,6%Al, остальное Fe. Такой сплав отличается твёрдостью и хрупкостью, но может быть изготовлен в виде фасонных отливок. Основные свойства альсифера: mн=35500, mмакс=120000, Hc=1,8 А/м, r=0,8 мкОм × м, т. е. не уступают свойствам высоконикелевых пермаллоев. Изделия из альсифера: магнитные экраны, корпусы приборов и т. д.— изготовляются методами литья с толщиной стенок не менее 2—3 мм из‑за хрупкости сплава. Эта особенность ограничивает применение данного материала. Благодаря хрупкости альсифера его можно размалывать в порошок и использовать наряду с карбонильным железом для изготовления высокочастотных прессованных сердечников.
Магнитодиэлектрики представляют собой одну из разновидностей магнитных материалов, предназначенных для использования при повышенных и высоких частотах, так как они характеризуются большим удельным электрическим сопротивлением, а следовательно, и малым тангенсом угла магнитных потерь. Магнитодиэлектрики получают путём прессовки порошкообразного ферромагнетика с изолирующей зёрна друг от друга органической или неорганической связкой. В качестве основы применяют карбонильное железо, размолотый альсифер и др. Изолирующей связкой служат фенолоформальдегидные смолы, полистирол, стекло и т. п. От основы требуется наличие высоких магнитных свойств, от связки — способность образовывать между зёрнами сплошную, без разрыва электроизоляционную плёнку. Такая плёнка должна быть по возможности одинаковой толщины и должна прочно связывать зёрна между собой. Магнитодиэлектрики характеризуют эффективной магнитной проницаемостью, которая всегда меньше μ ферромагнетика, составляющего основу данного магнитодиэлектрика. Это объясняется двумя причинами: наличием неферромагнитной связки и тем, что магнитную проницаемость магнитодиэлектриков часто приходится измерять у готовых сердечников, а не у тороидов.
Материалы специализированного назначения
Дата добавления: 2020-07-18; просмотров: 329;