Солнечная энергетика
Солнечная энергетика — отрасль науки и техники, разрабатывающая теоретические основы, методы и средства использования солнечного излучения или солнечной радиации для получения электрической, тепловой или других видов энергии и использования их в народном хозяйстве.
Солнечное излучение (СИ) — это процесс переноса энергии при распределении электромагнитных волн в прозрачной среде. По квантовой теории электромагнитные волны — это поток элементарных частиц или фотонов с нулевой массой покоя, движущихся в вакууме со скоростью света. В космосе через 1 м2 в 1 с проходит 3 · 1021 фотонов, энергия которых зависит от длины волны (мкм).
Источник солнечного излучения — Солнце — излучает в окружающее пространство поток мощности, эквивалентный 4 · 1023 кВт.
Земля находится от Солнца на расстоянии примерно 150 млн км. Площадь поверхности Земли, облучаемой Солнцем, составляет около 500 · 106 км2. Поток солнечной радиации, достигающей Земли, по разным оценкам составляет (7,5—10) · 107 кВт · ч/год, или (0,85—1,2) · 1014 кВт, что значительно превышает ресурсы всех других возобновляемых источников энергии. Если использовать всего 0,1 % всей поверхности Земли для строительства солнечных электростанций (СЭС), то их выработка превысит в 40 раз все потребление энергии человечеством на уровне 1983 г.
Солнечное излучение на поверхность Земли зависит от многих факторов: широты и долготы местности, ее географических и климатических особенностей, состояния атмосферы, высоты Солнца над горизонтом, размещения приемника СИ на Земле и по отношению к Солнцу и т.д. В целом можно выделить как закономерные особенности СИ, так и существенную долю его случайной составляющей. Суммарное СИ, достигающее поверхности Земли, RS обычно состоит из трех составляющих: Rпр — прямое СИ, поступающее от Солнца на приемную площадку в виде параллельных лучей; Rд — диффузное, или рассеянное молекулами атмосферных газов и аэрозолей СИ; Rотр — отраженная земной поверхностью доля СИ (для большей части поверхности Земли эта составляющая RS обычно незначительна и не учитывается вообще или приближенно учитывается в расчетах). При этом в течение как коротких (минуты, часы), так и длительных (сутки, недели) интервалов времени в данной точке Земли может отсутствовать полностью или частично составляющая Rпр. Наконец, в ночные часы отсутствует и RS в целом. Это означает, что солнечная энергетическая установка (СЭУ) на Земле имеет нулевую гарантированную мощность при использовании только СИ без сочетания с другими источниками энергии. Кроме того, СИ достигает своего максимума в летний период, когда в России обычно происходит закономерное уменьшение потребления электроэнергии. Соответственно, максимум зимнего потребления энергии в стране приходится на период минимального прихода СИ.
Измерение составляющих СИ на Земле производится на актинометрических станциях. Наиболее распространены измерения СИ на горизонтальную и реже на перпендикулярную к СИ приемную площадку. В связи с этим возникают существенные сложности при пересчете этих данных на произвольно ориетированную приемную площадку. Особенно это касается Rд, которое в условиях России имеет большой удельный вес в RS в течение года. К сожалению, как показывает мировой опыт, простой перенос имеющихся методов расчета СИ в одной стране на условия другой с другими климатическими условиями дает очень большие ошибки.
Дополнительные сложности для России вносит и очень ограниченное число актинометрических станций, измерения на которых можно использовать в расчетах режимов и параметров СЭУ разного типа и вида.
Поток СИ на Земле существенно меняется, достигая максимума в 2200 (кВт · ч)/(м2 · год) для северо-запада США, запада Южной Америки, части юга и севера Африки, Саудовской Аравии и Центральной части Австралии. Россия находится в зоне, где поток СИ меняется в пределах от 800 до 1400 (кВт · ч)/(м2 · год). При этом продолжительность солнечного сияния в России находится в пределах от 1700 до 2000 ч/год и несколько более. Максимум указанных значений на Земле составляет более 3600 ч/год. За год на всю территорию России поступает солнечной энергии больше, чем энергия от всех российских ресурсов нефти, газа, угля и урана. На рис. 17.13 представлены энергоресурсы солнечной энергетики России.
В то же время в мире уже сегодня солнечная энергетика весьма интенсивно развивается и занимает заметное место в топливно-энергетическом комплексе ряда стран, например в Германии. В этой стране, как и в ряде других развитых и развивающихся стран, принят ряд законов на государственном уровне, которые дают существенную поддержку развитию нетрадиционных возобновляемых источников энергии (НВИЭ) и, в частности, солнечной энергетике. Без принятия указанных законодательных актов использование НВИЭ было бы практически невозможно, особенно на начальных этапах его становления.
Солнечная энергия на Земле используется с помощью солнечных энергетических установок, которое можно классифицировать по следующим признакам:
· по виду преобразования солнечной энергии в другие виды энергии — тепло или электричество;
· по концентрированию энергии — с концентраторами и без концентраторов;
· по технической сложности — простые (нагрев воды, сушилки, нагревательные печи, опреснители и т.п.) и сложные.
Последние можно разделить на два подвида. Первый базируется в основном на системе преобразования СИ в тепло, которое далее чаще всего используется в обычных схемах тепловых электростанций. К ним относятся: башенные СЭС, солнечные пруды, СЭУ с параболоцилиндрическими концентраторами. Сюда же относятся и солнечные коллекторы, в которых происходит нагрев воды с помощью СИ. Второй подвид СЭУ базируется на прямом преобразовании СИ в электроэнергию с помощью солнечных фотоэлектрических установок (СФЭУ).
Указанные выше различные классификационные признаки СЭУ существенно влияют на их технико-экономические показатели и проблемы их реализации.
Для космических СЭС имеют место следующие основные проблемы: минимизация веса при доставке СЭС в космос; постоянная стабилизация СЭС на Солнце; система передачи энергии на Землю, связанная с необходимостью решения целого ряда проблем по охране окружающей среды, так как передача накопленной энергии в космической СЭС обычно предполагается или лазерным лучом, или в виде жесткого ультракоротковолнового излучения. Оба эти способа могут существенно повлиять на состояние атмосферы, радиосвязь и телевидение.
Для СЭС, работающих в большой энергосистеме, расчеты их эффективности могут базироваться на среднесуточных или даже среднемесячных данных по СИ, которые имеются в обычных справочниках.
Для СЭУ, обеспечивающих энергией автономного потребителя, требуются обычно часовые данные прихода СИ на произвольно ориентированную к Солнцу приемную площадку. Последняя может стационарно находиться на поверхности Земли или на крыше какого-нибудь строения. В первом случае в мировой литературе рекомендуют размещать эти площадки с углом наклона b, равным широте местности j и ориентированным на юг. Этим обеспечивается максимум прихода прямого СИ на приемную площадку в течение года. Если же учитывать и диффузную составляющую СИ, то угол наклона b должен быть меньше, чем j. Особенно это касается средних широт России.
Во втором случае приемная площадка может быть произвольно ориентирована на Солнце, что вызывает большие сложности в расчете составляющих СИ. Наконец, приемная площадка может по разному следить за Солнцем во времени. Экспериментальные данные для условий США (j = 35° сев. широты, юго-западные штаты) показывают, что переход от горизонтальной площадки к наклонной может дать до 16 % увеличения в приходе СИ за год. Соответственно, если организовать непрерывное слежение за Солнцем во времени, то указанное увеличение СИ за год составит до 54 % при значительном усложнении СЭУ в целом и, как следствие, увеличении затрат на нее.
В настоящее время в мире и России наиболее перспективными являются два вида СЭУ: солнечные коллекторы и СФЭУ.
Рассмотрим технические и энергетические особенности каждого из них.
Солнечные коллекторы (СК) — это технические устройства, предназначенные для прямого преобразования СИ в тепловую энергию в системах теплоснабжения (СТС) для нагрева воздуха, воды или других жидкостей. Системы теплоснабжения обычно принято разделять на пассивные и активные. Самыми простыми и дешевыми являются пассивные СТС, которые для сбора и распределения солнечной энергии используют специальным образом сконструированные архитектурные или строительные элементы здания или сооружения и не требуют дополнительного оборудования.
В настоящее время в мире все большее распространение получают активные СТС со специально установленным оборудованием для сбора, хранения и распространения СИ, которые по сравнению с пассивными СТС позволяют значительно повысить эффективность использования СИ, обеспечить большие возможности регулирования тепловой нагрузки и расширить область применения солнечных систем теплоснабжения в целом.
Выбор, состав и компоновка элементов активной СТС в каждом конкретном случае определяется многими показателями: климатическими факторами, типом объекта, режимом потребления тепла во времени, технико-экономическими показателями. Специфическими элементами этих СТС и является СК. Все прочие элементы таких СТС широко используются в промышленности и строительстве.
Солнечные коллекторы классифицируются по следующим признакам: по назначению — для горячего водоснабжения, отопления, теплохладоснабжения; по виду используемого теплоносителя — жидкостные и воздушные; по продолжительности работы — сезонные и круглогодичные; по техническому решению — одно-, двух- и многоконтурные. Кроме того, все СТС делятся на две группы: установки, работающие по разомкнутой или прямоточной схеме (рис. 17.14), и установки, работающие по замкнутой схеме (рис. 17.15).
Наиболее распространены сегодня так называемые плоские СК, позволяющие использовать как прямую, так и диффузную составляющую СИ, которая весьма значительна в условиях России.
Плоский СК представляет собой теплоизолированный с тыльной стороны к СИ и с боков ящик, внутри которого размещены теплопоглощающие каналы, по которым прокачивается теплоноситель. Сверху СК закрыт светопропускающим материалом. За счет использования СИ в СК температура теплоносителя на выходе из СК tвых оказывается выше, чем на входе tвх. Регулирование рабочей температуры теплоносителя осуществляется с помощью аппаратуры контроля и управления. Возможный диапазон этой температуры существенно зависит от климатических условий.
Циркуляция теплоносителя в СТС (чаще всего воды) может осуществляться принудительно с помощью небольшого насоса или естественным путем за счет разности гидростатических давлений в столбах холодной и теплой воды. В последнем случае бак должен находиться выше верхней отметки СК.
В ряде стран солнечные коллекторы СТС стали обычным атрибутом жизни. Технологии эффективного нагрева воды для бытовых целей с помощью СИ достаточно хорошо отработаны в мире и весьма доступны на рынке. Наиболее экономически эффективные сферы применения солнечных водонагревательных систем хорошо освоены. Например, в США более 60 % находящихся в среднем на широте Крыма частных и общественных бассейнов обогреваются за счет СИ. При этом используются простейшие и дешевые СТС — бесстекольные, без тепловой изоляции, пластиковые.
В России область распространения СК в настоящее время весьма ограничена при наличии хорошей производственной базы и отработанных технических решений, отвечающих современным требованиям. Основное препятствие использования СК в России — относительно высокая стоимость.
Современная фотоэнергетика базируется на использовании явления фотоэффекта, которое имеет место в некоторых материалах (например, кремнии).
В настоящее время солнечные фотоэлектрические установки находят все более широкое применение как источники энергии для средних и малых автономных потребителей, а иногда и для больших солнечных электростанций, работающих в энергосистемах параллельно с традиционными ТЭС, ГЭС и АЭС. Конструктивно СФЭУ обычно состоит из солнечных батарей в виде плоских прямоугольных поверхностей.
За последние десятилетия фотоэнергетика сделала очень большие шаги в решении двух основных проблем: повышении КПД СФЭУ и снижении стоимости их производства.
Наибольшее распространение получили СФЭУ на основе кремния трех видов: монокристаллического, поликристаллического и аморфного. В промышленном производстве находятся СФЭУ со следующими КПД: монокристаллический — 15—18 % (до 24 % на опытных образцах); поликристаллический — 12—14 % (до 16 % на опытных образцах); аморфный — 8—10 % (до 14 % на опытных образцах). Все эти данные соответствуют так называемым однослойным фотоэлементам. Сегодня же исследуются двух- и трехслойные фотоэлементы, которые позволяют использовать большую часть солнечного спектра по длине волны СИ. Для двухслойного фотоэлемента на опытных образцах получен КПД 30 %, а трехслойного — 35—40 %.
Наконец, в последние годы появился весьма перспективный конкурент для кремния в СФЭУ — арсенид галлия. Установки на его основе даже в однослойном исполнении имеют КПД до 30 % при гораздо более слабой зависимости его КПД от температуры.
Известно, что во время работы СФЭУ поверхности их сильно нагреваются, что приводит к снижению их энергетических показателей. Для охлаждения таких установок требуется использовать охлаждающую воду.
Мировая фотоэнергетика в настоящее время представляет собой развивающийся быстрыми темпами сектор энергетического рынка с огромными возможностями для дальнейшего роста. Интерес к фотоэнергетике обусловлен радикальным снижением удельной стоимости 1 кВт мощности СФЭУ за последние 20 лет (в 7 раз) и постепенным приближением ее к уровню экономически оправданных энергетических проектов. Если до 1996 г. на мировом рынке преобладала в основном сфера применения фотоэнергетических технологий в потребительском секторе, а также в коммуникации и связи, то сейчас все больше и больше начинает преобладать сфера чисто энергетического применения фотоэлектричества.
В настоящее время СФЭУ с успехом используются в ряде стран мира, особенно в Японии, Германии и США. В Японии и Германии развитию СФЭУ способствовали специальные государственные программы поддержки этого нетрадиционного сектора современной энергетики. В Германии вначале была принята и успешно реализована в начале 90-х годов XX в. программа «1000 солнечных крыш», а сегодня также успешно реализуется программа «100 тысяч фотоэлектрических крыш». В 1995—1996 гг. в Японии приступили к реализации программы «70000 фотоэлектрических крыш». В 1998 г. эта программа была пересмотрена в сторону увеличения до 1 млн крыш. В США с 1997 г. реализуется программа «Миллион солнечных крыш».
В 2000 г. США обнародовали новую перспективную цель энергетики страны: строительство солнечной электростанции в Техасе размером 107x107 миль, которая могла бы полностью обеспечить потребности США в электроэнергии.
По экспертным оценкам, вновь вводимая за год мощность СФЭУ в мире в 2005 г. составила 1,4 ГВт, а в 2010 г. — 5,4 ГВт при среднегодовом приросте около 35 %.
Сегодня в России имеются хорошая научная база для развития фотоэнергетики и мощное промышленное производство (в Москве, Санкт-Петербурге, Краснодаре, Рязани и других городах), которое способно создавать практически любые современные СФЭУ любого назначения.
Для широкого практического внедрения фотоэлектричества необходима его правовая поддержка государством, а также дальнейшее снижение стоимости 1 кВт установленной мощности.
Ветроэнергетика
Ветроэнергетика — отрасль науки и техники, разрабатывающая теоретические основы, методы и средства использования энергии ветра для получения механической, тепловой и электрической энергии и определяющая масштабы целесообразного использования ветровой энергии в народном хозяйстве.
Принцип использования ветровой энергии известен и используется человеком очень давно, начиная с ветряных мельниц. Движущийся поток ветра оказывает силовое воздействие на подвижную часть двигателя (рабочее колесо разного вида и конструкции), заставляя его вращаться и передавать полученную энергию другому техническому устройству для совершения полезной и нужной человеку работы (помол зерна, подъем воды из глубины земли, выработка электроэнергии и т.п.).
Кинетическая энергия Экин (Дж) воздушного потока со средней скоростью (м/с), проходящего через поперечное сечение F (м2), перпендикулярное , и массой воздуха m (кг) рассчитывается по формуле
(17.13) |
Величина m определяется по формуле
(17.14) |
где r — плотность воздуха, кг/м3.
Обычно в расчетах в качестве р принимают ее значение, равное 1,226 кг/м3 и соответствующее следующим нормальным климатическим условиям: t =15°С, р = 760 мм рт. ст., или 101,3 кПа. Если в (17.13) в качестве m взять секундную массу воздуха (кг/с), то получим значение мощности, развиваемой потоком воздуха (Дж/с или Вт), т.е.
(17.15) |
Для F = 1 м2 получаем значение удельной мощности (Вт) ветрового потока Nуд (Вт/м2) со скоростью (м/с):
(17.16) |
Обычно в ветроэнергетике используется рабочий диапазон скоростей ветра, не превышающих 25 м/с. Эта скорость соответствует 9-балльному ветру (шторм) по 12-балльной шкале Бофорта. Ниже приведены значения N уд для указанного рабочего диапазона скоростей ветра:
, м/с..................................... | ||||||||||
N уд, Вт/м2............................. | 4,9 | 16,55 | 39,2 | 76,6 |
Преобразование кинетической энергии ветра в электрическую происходит с помощью ветроэнергетических установок (ВЭУ), которые можно классифицировать по следующим признакам:
· по мощности — малые (до 10 кВт), средние (от 10 до 100 кВт), крупные (от 100 до 1000 кВт), сверхкрупные (более 1000 кВт);
· по числу лопастей рабочего колеса — одно-, двух-, трех- и многолопастные;
· по отношению рабочего колеса к направлению воздушного потока — с горизонтальной осью вращения, параллельной (рис. 17.16) или перпендикулярной вектору скорости (ротор Дарье) (рис. 17.17).
В настоящее время в мире и в России наибольшее распространение получили трехлопастные ВЭУ с горизонтальной осью вращения, в состав которых входят следующие основные компоненты: рабочее колесо 1, гондола с редуктором 2 и генератором, башня 3 и фундамент 4.
Башня — чаще трубообразная, реже — решетчатая, на ней в гондоле размещается основное энергетическое, механическое и вспомогательное оборудование ВЭУ, в том числе рабочее колесо или ротор с лопастями, преобразующий энергию ветра в энергию вращения вала, редуктор для повышения частоты вращения вала ротора и генератор. Лопасти ротора могут быть жестко закреплены на его втулке или изменять свое положение в зависимости от скорости ветра для повышения полезной мощности ВЭУ. В качестве генератора могут использоваться: синхронные и асинхронные (чаще всего), а также (реже) асинхронизированные синхронные генераторы.
На рис 17.18 представлены основные энергетические характеристики ВЭУ с горизонтальной осью вращения с регулируемыми и нерегулируемыми лопастями ротора.
Для каждой ВЭУ можно выделить следующие три характерных значения рабочей скорости ветра: — для 0 £ £ мощность ВЭУ равна нулю; — расчетная скорость ветра по мощности, для < £ мощность ВЭУ меняется в зависимости от скорости ветра и частоты вращения ротора; — для > мощность ВЭУ равняется нулю за счет принудительного торможения ротора или разворота его лопастей параллельно вектору скоростей ветра.
Для ориентировочных расчетов в диапазоне скоростей ветра от до полезная мощность ВЭУ NВЭУ (кВт) для заданной скорости ветра (м/с) на высоте башни Нб (м) и диаметре ротора ВЭУ D1 (м) рассчитывается по формуле
(17.17) |
где N уд (Вт/м2) определяется по (17.16); FВЭУ (м2) — ометаемая площадь ВЭУ с горизонтальной осью вращения, определяемая по формуле
(17.18) |
z — коэффициент мощности, обычно принимаемый равным 0,45 в практических расчетах, отн. ед.; hр — КПД ротора (порядка 0,9), отн. ед.; hг — КПД генератора (порядка 0,95), отн. ед.
После подстановки всех указанных значений в (17.17) получаем для ориентировочных расчетов:
(17.19) |
Для малых ВЭУ находится обычно в пределах 2,5—4 м/с, а — от 8 до 10 м/с. Для крупных ВЭУ указанные значения составляют 4—5 м/с и 12—15 м/с соответственно. Предельная допустимая скорость ветра по соображениям прочности ВЭУ равна 60 м/с.
Уровень шума крупных ВЭУ непосредственно у основания башни не превышает 95—100 дБ. Обычно для энергетических целей используют кинетическую энергию приземного слоя воздуха высотой не более 200 м с максимальной его плотностью r. При этом для повышения мощности единичной ВЭУ с заданным диаметром ротора D1 (м) стремятся увеличить высоту башни Нб (м), так как скорость ветра увеличивается с высотой по сложной степенной зависимости.
Чем выше расчетная скорость ветра, тем выше эффективность ВЭУ. Обычно в качестве нее применяется среднегодовая скорость ветра 0 (м/с), которая относительно мало меняется по годам. В то же время скорость ветра в течение года может существенно меняться во времени (как в течение суток, так и года в целом). Для нее характерны случаи, когда скорость ветра равна нулю (штиль), или не превышает (в этом случае мощность ВЭУ равна нулю из-за малой скорости ветра), или превышает (здесь мощность ВЭУ также равна нулю, но уже по соображениям прочности сооружений). Это означает, что гарантированная мощность ВЭУ в этих случаях равна нулю, и использование ВЭУ может лишь привести к экономии других видов энергоресурсов. Процесс изменения скорости ветра в течение года имеет свои закономерные зависимости (зимой скорость ветра выше, чем летом; в полдень выше, чем утром), а также существенную случайную составляющую. Для описания процесса изменения скорости ветра во времени требуются ежедневные наблюдения за скоростью ветра в данной точке не менее чем для 10—12 лет. Для описания ветрового процесса используются различные характерные функции распределения для разных географических зон России: распределения Гриневича, Рэлея, Вейбулла—Гудрича и др. Обычно они представляют собой зависимость частоты появления скорости i (м/с) в течение года ti( i) в часах или относительных единицах. Указанные зависимости называются также кривыми дифференциальной повторяемости скоростей ветра t( ) и рассчитываются для условий ровной местности и высоты флюгера 10 м. Учет реальных условий местности (впадин, холмов, строений, леса и т.п.) производится путем пересчета указанной t( ) с помощью специальных коэффициентов (в России обычно принимается шкала Милевского).
В ветроэнергетических расчетах учитывается также и «роза ветров», т.е. характерные направления скоростей ветра в данной точке в течение года. Особое значение «роза ветров» приобретает в случае строительства ветропарков или ветроэлектростанций (ВЭС), состоящих из нескольких ВЭУ (десятков—сотен) в данной местности.
Для оценки перспективности ВЭУ в данной местности или регионе необходимо знать его валовые, технические и экономические ветроэнергетические ресурсы. На рис. 17.19 представлены энергоресурсы ветроэнергетики России.
Для России в целом указанные виды ресурсов соответственно равны: 80000; 6218 и 31 ТВт · ч. На сегодняшний день использование указанных ресурсов ветра в России практически неощутимо. Обычно в мировой практике принято считать, что, если среднегодовая скорость ветра в данной местности превышает 5 (или 6) м/с, то использование ВЭУ здесь весьма перспективно. Для среднегодовых скоростей ветра от 3 до 5 (6) м/с необходимы детальные технико-экономические расчеты, в том числе и учет условий использования ВЭУ — в объединенной или локальной энергосистеме или для питания автономного потребителя, а также конкретные социально-экологические и экономические характеристики рассматриваемого региона.
Весьма перспективным для России представляется совместное использование ВЭУ и дизельных энергоустановок (ДЭУ), которые в настоящее время составляют основы локальных систем электроснабжения обширных северных и приравненных к ним территорий страны. Использование энергии ветра в России весьма незначительно, хотя в стране имеется хороший производственный потенциал для разработки серийных или массовых ВЭУ любой мощности (от сотен ватт до 1 МВт).
Весьма ощутимы успехи развития ветроэнергетики в мире, где ежегодный прирост мощности в последнее пятилетие составляет 30 % и более в разных странах. На 01.01.2006 г. общая установленная мощность в мире составила 59264 МВт при годовом приросте мощности 11408 МВт (29 %). По оценкам экспертов, установленная мощность ВЭУ в мире к 2010 г. вырастет по сравнению с современным уровнем более чем в 2,5 раза и достигнет 14879 МВт. При этом абсолютным лидером здесь является Германия, где установленная мощность на 01.01.2006 г. составила 18445 МВт (при годовом приросте в 1808 МВт) при прогнозе на 2010 г. — 26495 МВт. В России построена Крюковская ВЭС мощностью 5,1 МВт (20 агрегатов по 225 кВт и один агрегат 600 кВт, г. Калининград), Анадырская ВЭС (Чукотка) мощностью 2,5 МВт (10 агрегатов по 250 кВт) и строится Элистинская ВЭС (Калмыкия) мощностью 22 МВт (22 агрегата по 1 МВт).
Десятки фирм в разных странах мира сегодня представляют на рынок серийные ВЭУ мощностью от нескольких сотен ватт до 2—4 МВт.
Дата добавления: 2016-07-05; просмотров: 2540;