Совершенствование изоляции обмоток синхронных генераторов
Технико-экономические показатели синхронных генераторов в значительной степени определяются типом и качеством изоляционных материалов, используемых для обмоток электрических машин. Без совершенствования изоляции статорных обмоток генераторов было бы абсолютно невозможным создание генераторов мощностью 500—1200 МВт приемлемых для современной техники габаритов. С ростом мощностей единичных агрегатов почти пропорционально возрастает ток обмотки статора, в то время как уровень напряжения не может быть увеличен из-за опасностей пробоя изоляции, возникновения короны, высокого нагрева изолирующих сред. Следует отметить, что обмотки статора работают в тяжелых условиях высоких температур, механических воздействий, существенной виброактивности, переменных нагрузок. По этим причинам вопросы надежности, долговечности, уменьшения толщины изоляции постоянно находятся в поле зрения специалистов, связанных с электромашиностроительной отраслью.
До начала 60-х годов большинство генераторов изготавливалось с применением термопластичной изоляции, требующей пропитки битумными компаундами. Ее положительные свойства — эластичность и хорошая сопротивляемость влаге. Однако в процессе эксплуатации этот тип изоляции может подвергаться размягчению и даже частичному вытеканию из зоны пазов. Поэтому в настоящее время термопластичная изоляция имеет очень ограниченное применение.
Стержни статорных обмоток современных генераторов имеют другой тип изоляции — термореактивную, которая полимеризуется и затвердевает при температуре 150—160 °С и при повторных нагреваниях не размягчается. Термореактивная изоляция по сравнению с термопластичной имеет более высокую электрическую и механическую прочности, допустимую рабочую температуру 130 °С. Диэлектрические потери в термореактивной изоляции при воздействии переменного напряжения меньше в 3—4 раза, чем в термопластичной. Электрическая прочность созданных типов термореактивной изоляции «Слюдотерм», «Монолит», «Монолит-2», ВЭС-2 примерно в 2 раза выше, чем у термопластичной, и достигает 30—34 киловольт на миллиметр толщины (кВ/мм). Особенностью термореактивной изоляции является ее меньшая пластичность, что ограничивает деформацию стержней обмотки.
Применение нового типа изоляции позволило повысить напряжение турбогенераторов до 24—28 кВ, а при использовании масляного типа изоляции (например, для турбогенераторов ТВМ) до 36,75 кВ. Напряжения статорных обмоток гидрогенераторов обычно не превышают 13,8—15,75 кВ.
В 70-е годы в СССР был разработан и создан гидрогенератор нового типа на напряжение 121 кВ, присоединяемый к линии электропередачи 110 кВ непосредственно без повышающего трансформатора. Для обмоток статора была применена бумажно-масляная изоляция кабельного типа. Гидрогенератор имел мощность 14,5 МВт и был установлен на Сходненской ГЭС в черте Москвы. Он успешно прошел испытания при подключении к сети Мосэнерго, доказав возможность создания гидрогенераторов на принципиально более высокие напряжения.
В 90-е годы в Швеции были созданы гидрогенераторы и турбогенераторы типа «Power-former». Гидрогенератор напряжением 45 кВ, мощностью 11 MB · А, частотой вращения 600 об/мин также подключается к линии электропередач без использования повышающего трансформатора. Для обмотки статора применялась изоляция из «сшитого полиэтилена». Второй гидрогенератор напряжением 155 кВ, мощностью 75 MB · А, частотой вращения 125 об/мин включен в мае 2001 г., третий — напряжением 78 кВ, мощностью 25 MB · А, частотой вращения 115,4 об/мин пущен в августе 2001 г. Турбогенератор напряжением 136 кВ, мощностью 42 MB · А, частотой вращения 3000 об/мин был включен в сеть в декабре 2000 г.
Дата добавления: 2016-07-05; просмотров: 1549;