При длительном режиме работы


ВЭ – 10 – 1250 – 20 – УЗ,

где ВЭ – выключатель электромагнитный;

10 – номинальное напряжение, кВ;

1250 – номинальный ток, А;

20 – ток отключения, кА;

У – исполнение для умеренного климата;

З – эксплуатация в закрытых помещениях.

Условные графические изображения и буквенная кодировка основных электрических аппаратов приведены в приложении.

К электрическим аппаратам предъявляются следующие основные требования:

  • При номинальном режиме работы температура токоведущих частей не должна превышать допустимую величину.
  • При коротких замыканиях токоведущие элементы подвергаются значительным термическим и динамическим нагрузкам, но они не должны вызывать остаточные явления, нарушающие работу аппарата после устранения причины и последствий КЗ.
  • ЭА, предназначенные для частого включения и отключения, должны иметь высокую износостойкость.
  • Изоляция ЭА должна выдерживать перенапряжения, которые возникают при эксплуатации, и обладать определенным запасом в связи с ухудшением ее из-за осаждения пыли, влаги и т.д.
  • Высокая надежность.
  • Масса, габариты, стоимость, время установки и обслуживания должны быть минимальными.

 

Нагрев электрических аппаратов

при длительном режиме работы

 

При работе электрических аппаратов имеют место потери электроэнергии в виде тепла, которые расходуются на нагрев электрических аппаратов и рассеиваются в окружающей среде.

В результате нагрева электрических аппаратов происходит их старение. При недопустимых значениях нагрева происходит преждевременный выход из строя не только отдельных элементов, но и аппаратов в целом.

Например, при превышении допустимой температуры лишь на 80С срок службы изоляции сокращается в 2 раза. При увеличении температуры от 100 до 2500С прочность меди снижается на 40%.

Поэтому для того, чтобы электрический аппарат отработал свои нормативные часы, необходимо обеспечить его допустимый тепловой режим работы.

В аппаратах постоянного тока нагрев происходит в основном за счет потерь в активном сопротивлении токоведущей цепи.

Энергия W, Дж, выделяющаяся в проводнике, определяется по формуле

W = 2 , (1.1)

где i – ток, А;

R – сопротивление проводника, Ом;

t – длительность протекания тока, с.

Активное сопротивление проводника различно при постоянном и переменном токе из-за поверхностного эффекта и эффекта близости.

При переменном токе сопротивление проводника R~ определяется зависимостью

, (1.2)

где R = - сопротивление при постоянном токе;

k доб - коэффициент добавочных потерь из-за вышеотмеченных эффектов.

Результатом поверхностного эффекта является неравномерность плотности тока по сечению проводника. Переменный ток, протекая по проводнику, создает переменное магнитное поле, которое пронизывает проводник, наводит в нем ЭДС. Эта ЭДС создает вихревые токи, которые геометрически складываются с основным магнитным потоком. В результате наибольшая плотность будет на поверхности проводника. Коэффициент добавочных потерь, обусловленных поверхностным эффектом, принято обозначать kn, он всегда больше единицы (kn > 1).

Эффект близости заключается во взаимном влиянии магнитных полей проводников на ток, протекающий по этим проводникам. В результате ток по сечению проводников распределяется неравномерно. Отношение активного сопротивления проводника R~, находящегося в магнитном поле других проводников, к сопротивлению уединенного проводника R~уед, называется коэффициентом близости.

= . (1.3)

Как и в случае с поверхностным эффектом коэффициент близости усиливается с частотой тока и электрической проводимостью материала.

k зависит как от формы проводника, так и взаимного расположения и направления токов в них. Коэффициент близости К может быть и меньше единицы.

В трехфазных системах влияние соседних фаз значительно сложнее, чем в однофазных. Однако здесь имеет место минимальное расстояние между фазами, при котором эффект близости практически можно не учитывать. Так, при цилиндрических проводах k = 1, если расстояние между фазами более 6d, где d – диаметр провода. Для прямоугольных шин в трехфазной системе k = 1,0, если расстояние между шинами 3h, где h – наибольший размер поперечного сечения шины.

С учетом (1.2) и (1.3) получим

. (1.3)

Как следует из вышесказанного, поверхностный эффект и эффект близости существенно влияют на сопротивление проводников, а следовательно, и величину потерь в этих проводниках.

Потери в нетоковедущих ферромагнитных деталях аппаратов возникают в аппаратах, работающих в цепях переменного тока.

В цепях переменного тока, где имеются ферромагнитные элементы, имеют место активные потери в нетоковедущих ферромагнитных деталях, т.к. переменный магнитный поток, пересекая ферромагнитные детали, наводит вихревые токи, которые и являются причиной потерь. Направление вихревых токов таково, что создаваемые ими магнитные потоки направлены встречно основному полю. По этой причине магнитный поток по сечению распределяется неравномерно, и магнитная индукция максимальна на поверхности стержня.

Распределение магнитной индукции B и плотности тока Y в ферромагнитном стержне показано на рис. 1.1.

Глубина проникновения a (м) электромагнитной волны в тело стержня и удельная мощность потерь Pуд (Вт/см2) определяются по формулам:

= ;

= 2 , (1.5)

где - удельное электрическое сопротивление материала стержня, Ом·м;

- круговая частота изменения потока с -1;

- абсолютная магнитная проницаемость материала стержня, Гн/м;

- МДС на единицу длины стержня, А/см;

- частота, Гц;

- индукция, Тл.

Рис. 1.1. Распределение магнитной индукции В и плотности тока Y в ферромагнитном стержне

Из (1.5) видно, что чем меньше и выше и , тем сильнее эффект вытеснения потока, следовательно, больше потери.

Полные потери в стальном магнитопроводе определяются по формуле

= , (1.6)

где - максимальное значение магнитной индукции в магнитопроводе, Тл;

и - коэффициенты потерь от гистерезиса и вихревых токов;

- масса магнитопровода, кг;

- частота тока, Гц.

Для применяемых в электрических аппаратах трансформаторных сталей: = 1,9 - 2,6, = 0,4 - 1,2.

Для уменьшения потерь в магнитопроводе электроаппаратов они выполняются шихтованными из тонких изолированных друг от друга листов электротехнической стали толщиной 0,2 - 0,5 мм.

Для уменьшения потерь в массивных ферромагнитных деталях предусматриваются следующие меры:

· увеличивают расстояние от проводника с током до ферромагнитных деталей;

· на пути магнитного потока вводится немагнитный зазор;

· при номинальных токах выше 1000 А конструкционные детали изготавливаются из немагнитных материалов (латунь, немагнитный чугун, алюминиевые сплавы и др.).

Следует отметить, что в аппаратах переменного тока высокого напряжения помимо потерь в проводниках и ферромагнитных материалах учитывают также потери в изоляции проводов и изолирующих деталях

= , (1.7)

где - емкость изоляции, ;

- действующее значение напряжения, ;

- тангенс угла диэлектрических потерь в изоляции.

Изоляция аппарата нагревается как за счет этих потерь, так и потерь в токоведущей цепи.



Дата добавления: 2016-06-29; просмотров: 1840;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.