Химические и технологические свойства


Для более полной оценки качества материалов изучают также химические свойства. Эта группа свойств выражает способность и степень активности материала к химическому взаимодействию с реагентами внешней среды и, кроме того, способность сохранять постоянным состав и структуру материала в условиях инертной окружающей среды. Большинство строительных материалов проявляют активность при взаимодействии с кислотами, щелочами, агрессивными газами и другими средами. Кроме того, некоторые материалы проявляют склонность к самопроизвольным внутренним химическим изменениям в условиях инертной среды, что отражает неустановившееся равновесие внутренних химических связей. Постепенное или быстрое изменение структуры и ее разрушение под влиянием агрессивных химических и электрохимических процессов в материале называют коррозией.

Нередко изучается биохимическая стойкость материала против воздействия грибов, прорастания растений, порчи насекомыми, жучками-точильщиками. Комплексной характеристикой способности материала сопротивляться одновременному или поочередному (в разной последовательности) воздействию механических, физических и химических факторов является долговечность. О долговечности материала, выражаемой в единицах времени, судят или по ухудшению его качества, или по интенсивности изменения главных (ключевых) структурных элементов.

Коррозионная стойкость— свойство материалов со­противляться коррозионному воздействию среды.

Многие строительные материалы не обладают этими свойствами. Так, почти все цементы плохо сопротивля­ются действию кислот, битумы сравнительно быстро раз­рушаются под действием концентрированных растворов щелочей, древесина не стойка к действию тех и других. Лучше сопротивляются действию кислот и щелочей не­которые виды природных каменных материалов (диабаз, андезит, базальт), плотная керамика, а также большин­ство материалов из пластмасс.

Стойкость древесины различных пород к действию аг­рессивных сред (растворов солей, щелочей и кислот) неодинакова. Древесина хвойных пород характеризуется большей коррозионной стойкостью, чем древесина лиственных пород. При длительном воздействии кислот и ще­лочей древесина медленно разрушается. Интенсивность разрушения зависит от концентрации растворов, например: слабощелочные растворы, почти не разрушают дре­весины, а действию слабых растворов минеральных кис­лот она сопротивляется лучше, чем бетон. В морской воде древесина хуже сохраняется, чем в речной. Коррозией древесины можно считать её разрушение из-за гниения, полного разложения.

В результате коррозии без­возвратно теряется около 10—12 % ежегодного произ­водства черных металлов. В зависимости от механизма процес­са разрушения металла коррозия может быть химической и электрохимической.

Химическая коррозия возникает при действии па ме­талл сухих газов или жидкостей органического происхождения, которые не являются электролитами. Приме­ром химической коррозии служит окисление металла при высоких температурах, в результате чего на его поверх­ности возникает продукт окисления—окалина. Данный вид коррозии встречается редко.

Электрохимическая коррозия образуется в результате действия на металл электролитов (растворов кислот, щелочей и солей). Ионы металла переходят в раствор, при этом металл постепенно разрушается. Этот вид коррозии может также возникать при контакте двух разнородных металлов в присутствии электролита, когда между этими металлами проходит гальванический ток. В гальваничес­кой паре любых двух металлов будет разрушаться тот металл, который стоит ниже в ряду электрохимических напряжений. Например, железо в ряду напряжений рас­положено выше цинка, ниже меди, следовательно, при контакте железа с цинком будет разрушаться цинк, а при контакте железа с медью—железо. В металлах, из-за наличия неоднородных структурных составляющих мо­жет возникнуть микрокоррозия. Распространяясь по гра­ницам зерен металла, она вызывает межкристаллическую коррозию.

Группа технологических свойств выражает способность материала к восприятию определенных технологических операций, выполняемых с целью изменения его формы, размеров, характера поверхности, плотности и пр. Это качество материалов определяют в числовых или визуальных показателях по способности их к формуемости (жесткие, пластичные и литые смеси), раскалываемости, шлифуемости, полируемости, гвоздимости (способности удерживать гвозди и принимать их при силовых воздействиях), дробимости и многим другим технологическим свойствам, обусловленным разновидностью механического способа обработки материала.

Оценка технологических свойств производится условными методами и приборами с указанием названия прибора, температурных условий испытания, скорости нагружения при испытании и др. На практике нередко ограничиваются также визуальными оценками технологических свойств. Однако при массовом производстве и применении материалов (бетонных смесей, асфальтобетонной массы, полимерных композиций и др.) пользуются специальными приборами и методами испытаний с выражением технологических свойств в виде числовых показателей. Таким образом, строительные материалы обладают многообразными свойствами. Но между свойствами каждого материала, особенно при оптимальной структуре, имеется не только различие, но и тесная взаимосвязь. Последняя характеризуется определенными закономерностями, что позволяет нередко оценивать заданный качественный показатель по другому или комплексу других свойств этого материала.




Дата добавления: 2020-02-05; просмотров: 531;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.