КЛАССИФИКАЦИЯ ЭЛЕКТРОТЕХНОЛОГИЧЕСКИХ УСТАНОВОК
Установки, в которых происходит превращение электрической энергии в другие виды с одновременным осуществлением технологических процессов, в результате которых происходит изменение вещества, называют электротехнологическими.
Следует отметить, что в электротехнологических процессах используются свойства самих обрабатываемых веществ и материалов: электропроводность, магнитная проницаемость, диэлектрическая проницаемость, теплопроводность, теплоемкость, скрытая теплота плавления или парообразование, теплосодержание, энтальпия [2 - 4].
Применение электротехнологий позволяет с веществом, находящимся в каждом из агрегатных состояний (показано на нижеприведенной блок-схеме, рис. 1.1), посредством постоянных и переменных (различной частоты) токов, постоянных и переменных электрических и магнитных полей (с широким диапазоном напряженностей) совершать бесчисленное множество операций, а именно: изменение температуры, формы, структуры, состава, изменение свойств в разных направлениях и т.д.
Рис. 1.1. Агрегатные состояния вещества
Электротехнологические установки условно можно подразделить на установки общепромышленного и специального назначения.
Основные группы электротехнологических установок общепромышленного назначения представлены на блок-схеме (рис. 1.2) [4].
Рис. 1.2. Основные группы электротехнологических
установок общепромышленного назначения
ЭЛЕКТРОТЕРМИЧЕСКИЕ УСТАНОВКИ применяются в промышленности для термообработки металлов под пластическую деформацию, закалку, плавления, нагрева диэлектриков; в сельском хозяйстве для обогрева помещений различного технологического назначения; в быту (бытовые нагревательные приборы).
Один из вариантов электротермических установок – индукционная тигельная печь. На рис. 1.3 представлена схема печи.
Индукционная тигельная печь широко применяется для плавки как цветных, так и черных металлов. Емкость печи может варьироваться от десятков граммов до десятков тонн.
ЭЛЕКТРОХИМИЧЕСКИЕ УСТАНОВКИ применяются в промышленности при электролизе расплавов и растворов, для нанесения защитных и декоративных покрытий, элекро-химико-механической обработки изделий в электролитах.
В качестве примера на рис 1.4 представлена схема электролизной установки.
Явление выделения вещества на электродах при прохождении через электролит тока, а также процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов, называется электролизом.
В промышленности электролиз применяется в основном для анодного растворения металла и его катодного осаждения из растворов и расплавов.
Рис. 1.3. Схема индукционной тигельной печи: 1 – каркас; 2 – подовая плита; 3– водоохлаждаемый индуктор; 4–изоляционный слой; 5 – тигель; б – асбоцементная плита; 7 – сливной носок; 8 – воротник; 9 – гибкий токоподвод; 10 – опорные брусья | Рис. 1.4. Схема электролизной установки и распределение потенциала между электродами: 1 – электролит; 2 – электроды; 3 – источник питания; 4 – проводящие шины |
ЭЛЕКТРОМЕХАНИЧЕСКИЕ УСТАНОВКИ применяются в промышленности для ультразвукового воздействия на обрабатываемый материал, магнито-импульсной обработки металлов.
Одним из примеров электромеханической установки является установка ультразвуковой очистки. Принципиальная схема представлена на рис. 1.5.
Одним из типичных применений ультразвука в машиностроении является очистка поверхности изделий, загрязненных жировыми или мазутными пленками, покрытых осадками из продуктов сгорания топлива, ржавчиной, окалиной, оксидными пленками. Такого рода очистка выполняется обычно с помощью моющих средств, растворителей в барабанах, а также с помощью щеток. При использовании ультразвуковых колебаний очистка в ряде случаев может дать хорошие результаты при использовании воды; когда же очистка осуществляется с помощью растворителей, она ускоряется в десятки раз, причем качество ее (степень очистки поверхности) намного улучшается. Особенно эффективной оказывается ультразвуковая очистка деталей сложной конфигурации с полостями и, в частности, труб, так как механическая очистка таких деталей (например, щетками) затруднительна.
На рис. 1.5 подвергаемую очистке деталь помещают в ванну, в которой возникают ультразвуковые колебания. Генератор колебаний может находиться под дном ванны, как показано на рисунке (в этом случае колебания передаются жидкости через дно), или в жидкости. Очистка может осуществляться как на частотах 400 - 800 кГц при применении пьезоэлектрического преобразователя, так и на более низких частотах (20 - 30 кГн) при использовании магнитострикционных преобразователей.
Рис. 1.5. Принципиальная схема ультразвуковой очистки: 1 – генератор ультразвуковых колебаний; 2 – ванна, 3 – жидкость (растворитель); 4 – подвеска; 5 – очищаемая деталь | Рис. 1.6. Установка для электроэрозионной обработки: а – принципиальная схема; б – полная схема 1 – собственно станок; 2 – рабочая ванна; 3 – стол для установки электрода-изделия; 4 – электрод-изделие; 5 – регулятор подачи; 6 – источник питания (генератор импульсов); 7 – система снабжения диэлектрической жидкостью; 8 – электрод-инструмент |
ЭЛЕКТРОКИНЕТИЧЕСКИЕ УСТАНОВКИ применяются для разделения сыпучих материалов и эмульсий, очистки сточных вод, электроокраски, электроэрозионной обработки металлов.
Как пример на рис. 1.6 показана установка для электроэрозионной обработки металлов.
Для обработки металлов с высокими механическими свойствами применяется метод размерной обработки при непосредственном использовании теплового эффекта электрической энергии – электроэрозионная обработка. Она основана на эффекте расплавления и испарения микропорций материала под тепловым воздействием импульсов электрической энергии, которая выделяется в канале электроискрового заряда между поверхностью обрабатываемой детали и электродом-инструментом, погруженным в жидкую непроводящую среду. Следующие друг за другом импульсные разряды определенной длительности и формы производят выплавление и испарение микропорций металла. Электроэрозионный способ позволяет обрабатывать токопроводящие материалы любой механической прочности, вязкости, хрупкости, получать детали сложных форм и осуществлять операции, не выполняемые другими методами. При его использовании значительно снижается трудоемкость по сравнению с обработкой резанием, возможно осуществление механизации и автоматизации с целью глубокого регулирования параметров процесса.
Приведенное разделение в большой степени условное, поскольку многие технологические процессы могут обеспечиваться (или сопровождаться) несколькими способами преобразования энергии, расширяя возможности электротехнологических процессов, например элекроэрозионная, магнитоимпульсная обработки металлов, электровзрывная обработка материалов и т.д.
Электротехнологические установки специального назначения – установки, представляющие совокупность различного рода воздействий, в частности перенос энергии за счет электромагнитного поля.
В качестве примера электротехнологических установок специального назначения можно привести устройства для электродинамической сепарации в бегущем магнитном поле, предназначенные для извлечения ломов и отходов неферромагнитных металлов из твердых отходов, а также для сортировки ломов цветных металлов; устройства для электромагнитного транспорта и электромагнитного перемешивания жидких металлов.
Один из видов электротехнологических установок специального назначения – «одноручьевой» электромагнитный перемешиватель, его схема показана на рис. 1.7. Электромагнитное перемешивание – бесконтактное силовое воздействие на кристаллизующийся металл – является альтернативой механическим способам воздействия на кристаллизующийся металл и позволяет получить мелкозернистую литую структуру; исключить ликвацию, загазованность, неметаллические включения в литом металле; обеспечить повышенные эксплуатационные свойства полуфабрикатов и готовых изделий; исключить ряд промежуточных технологических переделов, что способствует энергосбережению.
На рис. 1.8 показана структура латуни, отлитой без электромагнитного перемешивания и с применением электромагнитного перемешивания. Сравнивая показанные темплеты, очевидно, что применение электромагнитного перемешивания в процессе кристаллизации способствует измельчению литой структуры, что в конечном итоге сказывается положительно на качестве полуфабрикатов и готовых изделий.
а | ||
б | ||
Рис. 1.7. Схема «одноручьевого» электромагнитного перемешивателя, совмещенного с кристаллизатором: 1 – магнитопровод; 2 – катушка обмотки; 3 – кристаллизатор в сборе; 4 – отливаемый слиток; 5 – жидкая фаза слитка | Рис. 1.8. Структура латуни, отлитой без электромагнитного перемешивания (а); отлитой с применением электромагнитного перемешивания (б) |
Дата добавления: 2020-02-05; просмотров: 392;